Pierwszy wykład: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Aneczka (dyskusja | edycje)
Nie podano opisu zmian
 
Aneczka (dyskusja | edycje)
Nie podano opisu zmian
Linia 1: Linia 1:
\section{Podstawowe pojęcia i definicje}
\label{sec:podstawy}
Powyżej widzimy tytuł naszego przedmiotu, następnie jego autora oraz datę
Powyżej widzimy tytuł naszego przedmiotu, następnie jego autora oraz datę
pochodzenia bieżącej wersji, generowaną automatycznie.
pochodzenia bieżącej wersji, generowaną automatycznie.

Wersja z 10:07, 13 lip 2006

Powyżej widzimy tytuł naszego przedmiotu, następnie jego autora oraz datę pochodzenia bieżącej wersji, generowaną automatycznie.

Dane o przedmiocie i autorze definiujemy w pliku \lstux!dane.tex!:

\begin{latex} \title{Geometria inaczej} \author{Piotr Goras} \date{Wersja z \today} \hyperbaseurl{http://osilek.mimuw.edu.pl} % link do strony naszego przedmiotu \end{latex}


Definicja Trójkąt prostokątny

Trójkątem prostokątnym nazywamy taki trójkąt, który ma przynajmniej jeden kątprosty.

Twierdzenie Pitagoras

W trójkącie prostokątnym o przyprostokątnych a, b i przeciwprostokątnej c zawsze zachodzi a2+b2=c2,zob. rys.~\ref{rys:trojkat}

\rysunek{trojkat}{Ilustracja twierdzenia Pitagorasa.}

Rysunki akceptujemy tylko w formacie PNG. Zdjęcia mogą także być w formacie JPG.

\begin{proof} Ble, ble. \end{proof}

W twierdzeniu~\ref{thm:pitagoras} widać, jak można wykorzystać definicję~\ref{dfn:kat_prosty} do tego, by sformułować je bez potrzeby stosowania \osiref{Analiza matematyczna}{miary Kąt'a}.


Stwierdzenie

Nie każdy trójkąt jest prosty.

Wniosek

Są trójkąty o bokach długości a, b, c, dla których a2+b2c2.
Uwaga
To nie jest cała prawda o trójkątach! Dodatkowo, wiemy, że:
  1. w każdym trójkącie o bokach a, b, c zachodzi:
    Parser nie mógł rozpoznać (błąd składni): {\displaystyle #;a+b \geq c #;} #;
  2. suma kątów w trójkącie jest większa od 90 stopni
  3. itd.

\subsection{Równania}

\begin{latex} a+b=c\end{latex}

daje a+b=c \begin{latex} \begin{equation} a + b = c \end{equation} \end{latex}

daje \begin{equation} a + b = c \end{equation}

\begin{latex} \begin{align} a + b &= c\\ c + d + e &= f \end{align} \end{latex}

daje \begin{align} a + b &= c\\ c + d + e &= f \end{align}


\subsection{Hiperłącza} \label{sec:hiper}

\url{http://www.mimuw.edu.pl}

\href{http://www.mimuw.edu.pl}{Wydział Matematyki}

\href{wyklad1.html}{Link do podstrony w naszym przedmiocie}

\subsection{Inne informacje} \label{sec:inne}