Teoria informacji/TI Ćwiczenia 13: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Niwinski (dyskusja | edycje)
Niwinski (dyskusja | edycje)
Linia 34: Linia 34:
</div>
</div>


Z poprzedniego ćwiczenia wiemy, że jedynymi liczbami losowymi mogą być liczby postaci <math> n = p_1 \cdot \ldots \cdot p_k,</math> gdzie <math> p_1, \ldots , p_k,</math>  są różnymi liczbami pierwszymi. Wiemy także, że <math> K_U (p_i ) \leq \log_2 p_i - \alpha (p_i), </math> gdzie <math>\alpha </math> jest funkcją rozbieżną do <math>\infty </math>. Z drugiej strony <math> \log n = \log p_1 + \ldots + \log p_k </math>. Wydaje się, że program generujący liczbę <math> n </math> (tzn. takie <math> x ,</math> że <math> U(x) = n </math>) można otrzymać jako konkatenację programów generujących liczby <math> p_1, \ldots , p_k,</math> plus informacja (o stałym rozmiarze), że wyniki należy wymnożyć.
Z poprzedniego ćwiczenia wiemy, że jedynymi liczbami losowymi mogą być liczby postaci <math> n = p_1 \cdot \ldots \cdot p_k,</math> gdzie <math> p_1, \ldots , p_k,</math>  są różnymi liczbami pierwszymi. Wiemy także, że <math> K_U (p_i ) \leq \log_2 p_i - \alpha (p_i), </math> gdzie <math>\alpha </math> jest funkcją rozbieżną do <math>\infty </math>. Z drugiej strony <math> \log n = \log p_1 + \ldots + \log p_k </math>. Wydaje się, że program generujący liczbę <math> n </math> (tzn. takie <math> x ,</math> że <math> U(x) = n </math>) można łatwo otrzymać jako konkatenację programów generujących liczby <math> p_1, \ldots , p_k,</math> plus informacja (o stałym rozmiarze), że wyniki należy wymnożyć.


Czy to znaczy, że jednak nie ma liczb losowych?
Czy to znaczy, że jednak nie ma liczb losowych?

Wersja z 18:39, 25 sie 2006

Ćwiczenia

Ćwiczenie 1 [Liczby pierwsze]

{{{3}}}


Ćwiczenie 2 [Liczby losowe]

{{{3}}}

Ćwiczenie 3 [Generowanie funkcji]

Przyjmujemy, że parą słów x,y, jest
x,y=x10x20xm10xm1y

Przypuśćmy, że zbiór wartości obliczanych przez maszynę Turinga M, tzn. RM={M(w):w{0,1}*}, jest zbiorem par, przy czym

(i) x,yRM|x|=|y|,

(ii) x,y,x,yRMy=y (tzn. RM jest grafem funkcji częściowej).

Dowieść, że nie jest możliwe, by dla nieskończenie wielu x,yRM, zachodziło

(K(y)|y|)(K(x)f(|x|))

gdzie jest funkcją taką, że (nf(n)).