Teoria informacji/TI Ćwiczenia 13: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Linia 34: | Linia 34: | ||
</div> | </div> | ||
Z poprzedniego ćwiczenia wiemy, że jedynymi liczbami losowymi mogą być liczby postaci <math> n = p_1 \cdot \ldots \cdot p_k,</math> gdzie <math> p_1, \ldots , p_k,</math> są różnymi liczbami pierwszymi. Wiemy także, że <math> K_U (p_i ) \leq \log_2 p_i - \alpha (p_i), </math> gdzie <math>\alpha </math> jest funkcją rozbieżną do <math>\infty </math>. Z drugiej strony <math> \log n = \log p_1 + \ldots + \log p_k </math>. Wydaje się, że program generujący liczbę <math> n </math> (tzn. takie <math> x ,</math> że <math> U(x) = n </math>) można otrzymać jako konkatenację programów generujących liczby <math> p_1, \ldots , p_k,</math> plus informacja (o stałym rozmiarze), że wyniki należy wymnożyć. | Z poprzedniego ćwiczenia wiemy, że jedynymi liczbami losowymi mogą być liczby postaci <math> n = p_1 \cdot \ldots \cdot p_k,</math> gdzie <math> p_1, \ldots , p_k,</math> są różnymi liczbami pierwszymi. Wiemy także, że <math> K_U (p_i ) \leq \log_2 p_i - \alpha (p_i), </math> gdzie <math>\alpha </math> jest funkcją rozbieżną do <math>\infty </math>. Z drugiej strony <math> \log n = \log p_1 + \ldots + \log p_k </math>. Wydaje się, że program generujący liczbę <math> n </math> (tzn. takie <math> x ,</math> że <math> U(x) = n </math>) można łatwo otrzymać jako konkatenację programów generujących liczby <math> p_1, \ldots , p_k,</math> plus informacja (o stałym rozmiarze), że wyniki należy wymnożyć. | ||
Czy to znaczy, że jednak nie ma liczb losowych? | Czy to znaczy, że jednak nie ma liczb losowych? |
Wersja z 18:39, 25 sie 2006
Ćwiczenia
Ćwiczenie 1 [Liczby pierwsze]
{{{3}}}
Ćwiczenie 2 [Liczby losowe]
{{{3}}}
Ćwiczenie 3 [Generowanie funkcji]
Przyjmujemy, że parą słów , jest
Przypuśćmy, że zbiór wartości obliczanych przez maszynę Turinga , tzn. , jest zbiorem par, przy czym
(i) ,
(ii) (tzn. jest grafem funkcji częściowej).
Dowieść, że nie jest możliwe, by dla nieskończenie wielu , zachodziło
gdzie jest funkcją taką, że