Analiza matematyczna 1/Ćwiczenia 6: Szeregi liczbowe: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Linia 1: Linia 1:
==6. Szeregi liczbowe==
==6. Szeregi liczbowe==


{{cwiczenie|[Uzupelnij]||
{{cwiczenie|6.1.||


Zbadać zbieżność następujących szeregów liczbowych:<br>
Zbadać zbieżność następujących szeregów liczbowych:<br>
Linia 11: Linia 11:
\displaystyle \sum_{n=1}^{\infty}\cos\frac{1}{n}\sin\frac{1}{n^2}.</math>
\displaystyle \sum_{n=1}^{\infty}\cos\frac{1}{n}\sin\frac{1}{n^2}.</math>
}}
}}
{black}


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">   
'''(1)'''
'''(1)'''
Zastosować kryterium porównawcze
Zastosować kryterium porównawcze
(patrz Twierdzenie [[##t.new.am1.w.06.090|Uzupelnic t.new.am1.w.06.090|]]).<br>
(patrz Twierdzenie [[Analiza matematyczna 1/Wykład 6: Szeregi liczbowe#twierdzenie_6_9|twierdzenie 6.9.]]).<br>
'''(2)'''
'''(2)'''
Zastosować kryterium porównawcze.
Zastosować kryterium porównawcze.

Wersja z 17:57, 7 sie 2006

6. Szeregi liczbowe

Ćwiczenie 6.1.

Zbadać zbieżność następujących szeregów liczbowych:
(1) n=15+(1)nn
(2) n=1cos1nsin1n2.

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Zbadać zbieżność następujących szeregów liczbowych:
(1) n=11nn
(2) n=1cos1n

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Obliczyć sumę następujących szeregów liczbowych:
(1) n=11n(n+1)
(2) n=13n+2n6n
(3) n=11(2n1)(2n+1).

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Zbadać zbieżność następujących szeregów liczbowych:
(1) n=11lnn
(2) n=11(ln(lnn))lnn

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Zbadać zbieżność następujących szeregów liczbowych:
(1) n=11n1+1n
(2) n=11n(1+1n)n

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Niech n=1an będzie szeregiem o wyrazach dodatnich.
(1) Udowodnić, że jeśli szereg n=1an jest zbieżny, to także szereg n=1an2 jest zbieżny.
(2) Pokazać, że nie zachodzi implikacja odwrotna w powyższym stwierdzeniu.

{black}

Wskazówka
Rozwiązanie