Analiza matematyczna 1/Ćwiczenia 5: Obliczanie granic: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 260: | Linia 260: | ||
\lim\limits_{n\rightarrow +\infty}\frac{n^5+n^6}{2^n+3^n}.</math> | \lim\limits_{n\rightarrow +\infty}\frac{n^5+n^6}{2^n+3^n}.</math> | ||
}} | }} | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none"> | ||
Linia 272: | Linia 270: | ||
Najpierw wyznaczyć granicę argumentu funkcji <math>\displaystyle\mathrm{arctg}\,.</math><br> | Najpierw wyznaczyć granicę argumentu funkcji <math>\displaystyle\mathrm{arctg}\,.</math><br> | ||
'''(4)''' | '''(4)''' | ||
Skorzystać z twierdzenia o trzech ciągach oraz | Skorzystać z twierdzenia o trzech ciągach oraz [[Analiza matematyczna 1/Wykład 5: Obliczanie granic#twierdzenie_5_3|twierdzenie 5.3.]] | ||
</div></div> | |||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"> |
Wersja z 12:42, 7 sie 2006
Obliczanie granic
Ćwiczenie 5.1.
Obliczyć następujące granice ciągów:
(1)
(2)
(3)
Ćwiczenie 5.2.
Obliczyć następujące granice ciągów:
(1)
gdzie jest ciągiem o wyrazach dodatnich takim, że
(2)
(3)
(4)
(5)
(6)
Ćwiczenie 5.3.
Obliczyć następujące granice ciągów:
(1)
(2)
(3)
(4)
Ćwiczenie [Uzupelnij]
Obliczyć granice górne i dolne następujących ciągów:
(1)
(2)
(3)
{black}
Ćwiczenie [Uzupelnij]
Ciąg zadany jest rekurencyjnie
gdzie Zbadać zbieżność ciągu Jeśli jest on zbieżny, obliczyć jego granicę.
{black}
Ćwiczenie [Uzupelnij]
Niech będzie ciągiem liczbowym o wyrazach dodatnich
(to znaczy
).
Udowodnić następujące stwierdzenia:
(1) jeśli
to
;
(2) jeśli
to
Korzystając z powyższych stwierdzeń wyznacz następujące
granice:
(3)
gdzie ;
(4)
gdzie
{black}