PEE Zadania z rozwiązaniami: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 304: | Linia 304: | ||
: <math>U_{C_u}=IR=1e^{j90^\circ} \ \Rightarrow \ u_{C_u}(t)=\sqrt{2}\sin(t+90^\circ) \ \Rightarrow \ u_{C_u}(0^+)=\sqrt{2}</math> | : <math>U_{C_u}=IR=1e^{j90^\circ} \ \Rightarrow \ u_{C_u}(t)=\sqrt{2}\sin(t+90^\circ) \ \Rightarrow \ u_{C_u}(0^+)=\sqrt{2}</math> | ||
: <math>I_{L_u}={U_{C_u} \over Z_L}={1e^{j90^\circ} \over j1}=1 \ \Rightarrow \ i_{L_u}(t)=\sqrt{2}\sin(t) \ \Rightarrow \ i_{L_u}(0^+)=0</math> | : <math>I_{L_u}={U_{C_u} \over Z_L}={1e^{j90^\circ} \over j1}=1 \ \Rightarrow \ i_{L_u}(t)=\sqrt{2}\sin(t) \ \Rightarrow \ i_{L_u}(0^+)=0</math> | ||
Stan przejściowy | Stan przejściowy | ||
Linia 309: | Linia 310: | ||
Warunki początkowe dla stanu przejściowego | Warunki początkowe dla stanu przejściowego | ||
: <math>u_{C_p}(0^+)=u_C(0^-)-u_{C_u}(0^+)=0-1,41=-1,41 V</math> | |||
: <math>i_{L_p}(0^+)=i_L(0^-)-i_{L_u}(0^+)=0,56-0=0,56 A</math> | |||
Obwód w stanie przejściowym (schemat operatorowy) | |||
[[Grafika:PEE_Zadania_rozw_7_c.jpg]] | |||
Z metody potencjałów węzłowych | |||
: <math>U_{C_p}(s)={{-0,56 \over s}-1,41 \over 2+s+{1 \over s}}={-(1,41s+0,56) \over s^2+2s+1}={-1,41s-0,56 \over (s+1)^2}</math> | |||
: <math>u_{C_p}(t)=\lim_{s \to -1}{d \over ds} \left [ {-1,41s-0,56 \over (s+1)^2}e^{st}(s+1)^2 \right ]</math> | |||
: <math>u_{C_p}(t)=te^{st}(-1,41s-0,56)+e^{st}(-1,41)|_{s=-1}=0,85te^{-t}-1,41e^{-t}</math> | |||
Prąd kondensatora | |||
Wersja z 13:53, 2 sie 2006
Zadanie 1
Wyznaczyć rezystancję wypadkową obwodu przedstawionego na rysunku poniżej:
Rozwiązanie
Po likwidacji połączenia szeregowego rezystorów ( i oraz i ) należy zastosować transformację trójkąt-gwiazda lub gwiazda-trójkąt w odniesieniu do wybranych trzech rezystorów obwodu, a następnie wykorzystać uproszczenia wynikające z powstałych połączeń szeregowych i równoległych w obwodzie. Po wykonaniu tych działań otrzymuje się .
Zadanie 2
Napisać równanie węzłowe dla obwodu z rysunku poniżej. Potencjały węzłów zaznaczono na rysunku w postaci i . Rozwiązać to równanie wyznaczając potencjały węzłów oraz prądy w gałęziach (prądy rezystancji, pojemności i indukcyjności). Przyjąć: , , , , , ,
Rozwiązanie
Wartości zespolone:
Równanie admitancyjne
Z rozwiązania tego macierzowego układu równań mamy
Prądy w obwodzie:
- (prąd rezystora i źródła )
Zadanie 3
Wyznaczyć rozwiązanie obwodu z rysunku poniżej stosując zasadę superpozycji. Przyjąć , , , , , .
Rozwiązanie
A) Rozwiązanie obwodu dla składowej stałej (źródło )
Obwód dla składowej stałej przedstawiono na rysunku poniżej (a). Cewka w stanie ustalonym dla składowej stałej jest zwarciem a kondensator przerwą.
Dla prądu stałego tylko jeden prąd, , jest różny od zera. Jego wartość jest równa
B) Rozwiązanie obwodu dla składowej zmiennej (źródło )
Obwód dla składowej sinusoidalnej przedstawiono w postaci symbolicznej na (rys. b). Parametry symboliczne obwodu są następujące: , , . Impedancja zastępcza cewki i kondensatora jest równa
Napięcie i prądy w obwodzie:
Wartości prądów wyrażone w postaci czasowej:
Całkowite rozwiązanie obwodu jest sumą obu składowych:
Zadanie 4
Wyznaczyć rozpływy prądów w obwodzie przedstawionym poniżej:
Przyjąć następujące wartości parametrów elementów obwodu: , , , oraz
Rozwiązanie
Postać obwodu po eliminacji sprzężenia magnetycznego przedstawiono poniżej:
Wielkości symboliczne charakteryzujące elementy obwodu:
Impedancja zastępcza obwodu wobec
Napięcie
Prądy:
Napięcia na elementach równoległych w obwodzie oryginalnym i zastępczym są sobie równe i wynoszą . Można to łatwo sprawdzić w obwodzie oryginalnym obliczając napięcia na cewkach sprzężonych. Mianowicie
Zadanie 5
Wyznaczyć prądy w układzie trójfazowym o odbiorniku połączonym w trójkąt przedstawionym na rysunku poniżej. Sporządzić wykres wektorowy prądów i napięć. Przyjąć następujące wartości parametrów elementów: , .
Rozwiązanie
Napięcia międzyfazowe:
Prądy fazowe odbiornika:
Prądy liniowe układu:
Wykres wektorowy prądów i napięć przedstawiony jest poniżej:
Zadanie 6
Określić przebieg w stanie nieustalonym w obwodzie po przełączeniu.
Dane:
Rozwiązanie
1) Warunki początkowe w obwodzie (stan ustalony przed przełączeniem).
Wobec kondensator stanowi przerwę. Prąd płynie w obwodzie: . Jego wartość:
Napięcie na kondensatorze:
2) Stan ustalony w obwodzie po przełączeniu.
Obwód podobny do tego z punktu 1 przy zastąpieniu przez . Prąd płynie w obwodzie: . Jego wartość:
Napięcie ustalone na kondensatorze:
3) Stan przejściowy (metoda klasyczna).
Obwód dla stanu przejściowego pokazuje rysunek:
Z prawa prądowego Kirchhoffa:
Po wstawieniu liczb otrzymuje się
4) Rozwiązanie pełne
Z warunku początkowego
Przebieg napięcia
Zadanie 7
Wyznaczyć przebiegi oraz w stanie nieustalonym w obwodzie po przełączeniu.
Dane:
Rozwiązanie
Warunki początkowe – stan ustalony w obwodzie przed przełączeniem
Stan ustalony po przełączeniu
Stan przejściowy
Warunki początkowe dla stanu przejściowego
Obwód w stanie przejściowym (schemat operatorowy)
Z metody potencjałów węzłowych
Prąd kondensatora