PEE Zadania z rozwiązaniami: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Robert m (dyskusja | edycje)
Nie podano opisu zmian
Robert m (dyskusja | edycje)
Nie podano opisu zmian
Linia 4: Linia 4:


[[Grafika:PEE_Zadania_rozw_1.jpg]]
[[Grafika:PEE_Zadania_rozw_1.jpg]]


''Rozwiązanie''
''Rozwiązanie''
Linia 68: Linia 69:


[[Grafika:PEE_Zadania_rozw_3.gif]]
[[Grafika:PEE_Zadania_rozw_3.gif]]


''Rozwiązanie''
''Rozwiązanie''
Linia 116: Linia 118:


[[Grafika:PEE_Zadania_rozw_4.gif]]
[[Grafika:PEE_Zadania_rozw_4.gif]]
Przyjąć następujące wartości parametrów elementów obwodu: <math>R=1\Omega</math>, <math>L_1=2H</math>, <math>L_2=1H</math>, <math>M=1H</math> oraz <math>i(t)=10\sin(t+45^\circ)A</math>
''Rozwiązanie''
Postać obwodu po eliminacji sprzężenia magnetycznego przedstawiono poniżej:
[[Grafika:PEE_Zadania_rozw_4_a.gif]]
Wielkości symboliczne charakteryzujące elementy obwodu:
: <math>I={5 \over \sqrt{2}}e^{j45^\circ}</math>
: <math>Z_1=j\omega(L_1-M)=j1</math>
: <math>Z_2=j\omega(L_2-M)=0</math>
: <math>Z_M=j\omega M=j1</math>
Impedancja zastępcza obwodu wobec <math>Z_2=0</math>
: <math>Z={RZ_M \over R+Z_M}={1 \over \sqrt{2}}e^{j45^\circ}</math>
Napięcie <math>U_{AB}</math>
: <math>U_{AB}=ZI=j5</math>
Prądy:
: <math>I_R={U_{AB} \over R}=j5</math>
: <math>I_1=0</math>
: <math>I_2=I_3={U_{AB} \over Z_M}=5</math>
Napięcia na elementach równoległych w obwodzie oryginalnym i zastępczym są sobie równe i wynoszą <math>U_{AB}=j5</math>. Można to łatwo sprawdzić w obwodzie oryginalnym obliczając napięcia na cewkach sprzężonych. Mianowicie
: <math>U_{L_1}=j\omega L_1I_1+j\omega MI_2</math>
: <math>U_{L_2}=j\omega L_2I_2+j\omega MI_1</math>
<hr width="100%">
'''Zadanie 5'''
Wyznaczyć prądy w układzie trójfazowym o odbiorniku połączonym w trójkąt przedstawionym na rysunku poniżej. Sporządzić wykres wektorowy prądów i napięć. Przyjąć następujące wartości parametrów elementów: <math>|E_f|=200 V</math>, <math>R=X_L=X_C =10\Omega</math>.
[[Grafika:PEE_Zadania_rozw_5.gif ]]

Wersja z 11:40, 2 sie 2006

Zadanie 1

Wyznaczyć rezystancję wypadkową obwodu przedstawionego na rysunku poniżej:


Rozwiązanie

Po likwidacji połączenia szeregowego rezystorów (1Ω i 5Ω oraz 2Ω i 8Ω ) należy zastosować transformację trójkąt-gwiazda lub gwiazda-trójkąt w odniesieniu do wybranych trzech rezystorów obwodu, a następnie wykorzystać uproszczenia wynikające z powstałych połączeń szeregowych i równoległych w obwodzie. Po wykonaniu tych działań otrzymuje się Rwe=3,18Ω.



Zadanie 2

Napisać równanie węzłowe dla obwodu z rysunku poniżej. Potencjały węzłów zaznaczono na rysunku w postaci V1 i V2. Rozwiązać to równanie wyznaczając potencjały węzłów oraz prądy w gałęziach (prądy rezystancji, pojemności i indukcyjności). Przyjąć: i1(t)=102sin(ωt), i2(t)=52sin(ωt90), e1(t)=10sin(ωt+45), e2(t)=20sin(ωt+90), R=2Ω, XL=ωL=2Ω, XC=1/ωC=1Ω


Rozwiązanie

Wartości zespolone:

E1=5+j5
E2=20j
I1=10
I2=5j
ZL=j2
ZC=j

Równanie admitancyjne

[10,50,50,5+j0,5][V1V2]=[7,5+j7,5105j]

Z rozwiązania tego macierzowego układu równań mamy

V1=14+j18
V2=13+j21

Prądy w obwodzie:

IR1=(V1E1)/R=9,5+j6,5 (prąd rezystora R i źródła e1)
IR2=(V1V2)/R=0,5j1,5
IL=(V2+E2)/ZL=20,5+j6,5
IC=V2/ZC=21j13



Zadanie 3

Wyznaczyć rozwiązanie obwodu z rysunku poniżej stosując zasadę superpozycji. Przyjąć i(t)=22sin(ωt+90) A, e(t)=E=5 V, R=1Ω, L=1H, C=0,5F, ω=1rads.


Rozwiązanie

A) Rozwiązanie obwodu dla składowej stałej (źródło E)

Obwód dla składowej stałej przedstawiono na rysunku poniżej (a). Cewka w stanie ustalonym dla składowej stałej jest zwarciem a kondensator przerwą.


Dla prądu stałego tylko jeden prąd, iR(E), jest różny od zera. Jego wartość jest równa

iR(E)=ER=5
iL(E)=iC(E)=0

B) Rozwiązanie obwodu dla składowej zmiennej (źródło i(t))

Obwód dla składowej sinusoidalnej przedstawiono w postaci symbolicznej na (rys. b). Parametry symboliczne obwodu są następujące: I=2ej90, ZL=jωL=j1, ZC=1/jωC=j2. Impedancja zastępcza cewki i kondensatora jest równa

ZLC=ZLZCZL+ZC=j2

Napięcie i prądy w obwodzie:

UAB(I)=ZLCI=4
IC(I)=UAB(I)ZC=j2
IL(I)=UAB(I)ZL=j4
IR(I)=0

Wartości prądów wyrażone w postaci czasowej:

iC(I)(t)=22(t90)
iL(I)(t)=42(t+90)
iR(I)(t)=0

Całkowite rozwiązanie obwodu jest sumą obu składowych:

iC(t)=iC(E)(t)+iC(I)(t)=22(t90) A
iL(t)=iL(E)(t)+iL(I)(t)=42(t+90) A
iR(t)=iR(E)(t)+iR(I)(t)=5 A



Zadanie 4

Wyznaczyć rozpływy prądów w obwodzie przedstawionym poniżej:


Przyjąć następujące wartości parametrów elementów obwodu: R=1Ω, L1=2H, L2=1H, M=1H oraz i(t)=10sin(t+45)A


Rozwiązanie

Postać obwodu po eliminacji sprzężenia magnetycznego przedstawiono poniżej:

Wielkości symboliczne charakteryzujące elementy obwodu:

I=52ej45
Z1=jω(L1M)=j1
Z2=jω(L2M)=0
ZM=jωM=j1

Impedancja zastępcza obwodu wobec Z2=0

Z=RZMR+ZM=12ej45

Napięcie UAB

UAB=ZI=j5

Prądy:

IR=UABR=j5
I1=0
I2=I3=UABZM=5

Napięcia na elementach równoległych w obwodzie oryginalnym i zastępczym są sobie równe i wynoszą UAB=j5. Można to łatwo sprawdzić w obwodzie oryginalnym obliczając napięcia na cewkach sprzężonych. Mianowicie

UL1=jωL1I1+jωMI2
UL2=jωL2I2+jωMI1



Zadanie 5

Wyznaczyć prądy w układzie trójfazowym o odbiorniku połączonym w trójkąt przedstawionym na rysunku poniżej. Sporządzić wykres wektorowy prądów i napięć. Przyjąć następujące wartości parametrów elementów: |Ef|=200V, R=XL=XC=10Ω.