Analiza matematyczna 2/Ćwiczenia 15: Zastosowania równań różniczkowych. Elementy rachunku wariacyjnego: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu – „,↵</math>” na „</math>,”
m Zastępowanie tekstu – „<math> ” na „<math>”
 
Linia 160: Linia 160:
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">
W tym przypadku <math>L(x,y,t)=u(y)</math>, zatem
W tym przypadku <math>L(x,y,t)=u(y)</math>, zatem
<math>\dfrac{\partial L}{\partial x}=0</math>. Z kolei <math> \dfrac{d}{dt}
<math>\dfrac{\partial L}{\partial x}=0</math>. Z kolei <math>\dfrac{d}{dt}
\dfrac{\partial L(f,f',t)}{\partial y} = \dfrac{d}{dt} u'(f'(t))=
\dfrac{\partial L(f,f',t)}{\partial y} = \dfrac{d}{dt} u'(f'(t))=
f''(t)u''(t)=f''(t)\dfrac{\partial^2 L(f,f',t)}{\partial y^2}</math>,
f''(t)u''(t)=f''(t)\dfrac{\partial^2 L(f,f',t)}{\partial y^2}</math>,
Linia 213: Linia 213:


Stąd <math>L-f'\frac{\partial L}{\partial y}=C</math> wtedy i tylko wtedy,
Stąd <math>L-f'\frac{\partial L}{\partial y}=C</math> wtedy i tylko wtedy,
gdy <center><math> \frac{d}{dt}\big(L-f'\frac{\partial L}{\partial y}\big)=0</math></center>
gdy <center><math>\frac{d}{dt}\big(L-f'\frac{\partial L}{\partial y}\big)=0</math></center>


co ma miejsce wtedy i tylko wtedy, gdy <math>f</math> spełnia równanie
co ma miejsce wtedy i tylko wtedy, gdy <math>f</math> spełnia równanie

Aktualna wersja na dzień 22:11, 11 wrz 2023

Zastosowania równań różniczkowych. Elementy rachunku wariacyjnego

Ćwiczenie 15.1.

W przestrzeni C1[0,1] funkcji ciągłych o ciągłej pochodnej określamy normę wzorem

f=max{|f(t)|,0t1}+max{|f(t)|,0t1}.

Wówczas odległość f od g w tej przestrzeni wynosi d(f,g)=fg.

a) Wyznaczyć odległość funkcji f(t)=t i g(t)=t2 w tej przestrzeni.

b) Wyznaczyć odległość funkcji f(t)=t i g(t)=ln(1+t) w tej

przestrzeni.
Wskazówka
Rozwiązanie

Ćwiczenie 15.2.

a) Pokazać, że równanie Lagrange'a-Eulera jest równaniem różniczkowym zwyczajnym rzędu (co najwyżej) drugiego.

b) Czy równanie Lagrange'a-Eulera jest równaniem różniczkowym

liniowym?
Wskazówka
Rozwiązanie

Ćwiczenie 15.3.

Jak wygląda równanie Lagrange'a-Eulera, jeśli funkcja Lagrange'a
(x,y,t)L(x,y,t)

nie zależy od zmiennej y? Wyznaczyć ekstremalę funkcjonału

a)J[f]=01(tsinfcosf)dt,f(0)=0,f(1)=π4;b)J[f]=01((t+1)effet)dt,f(0)=0,f(1)=1.
Wskazówka
Rozwiązanie

Ćwiczenie 15.4.

Jak wygląda równanie Lagrange'a-Eulera, jeśli funkcja L nie zależy ani od pierwszej, ani od trzeciej zmiennej? Wyznaczyć ekstremalę funkcjonału

J[f]=01((f)2+f+3)dt,f(0)=0,f(1)=5
Wskazówka
Rozwiązanie

Ćwiczenie 15.5.

Wykazać, że jeśli funkcja Lagrange'a (x,y,t)L(x,y,t) nie zależy od zmiennej t, to równanie Lagrange'a -Eulera jest równoważne równaniu LfLy=C to jest równaniu

L(f,f,t)fLy(f,f,t)=C,

gdzie C jest pewną stałą.

Wskazówka
Rozwiązanie

Ćwiczenie 15.6.

a) Wyznaczyć ekstremalę funkcjonału

J[f]=ab(f2f)etdt,f(a)=A,f(b)=B

b) Czy każde zagadnienie wariacyjne ma rozwiązanie?

Wskazówka
Rozwiązanie

Ćwiczenie 15.7.

Wyznaczyć ekstremalę funkcjonału

J[f]=121+(f)2fdt,f(1)=1,f(2)=4
Wskazówka
Rozwiązanie

Ćwiczenie 15.8.

Wyznaczyć ekstremalę funkcjonału

J[f]=12(t2(f)2+12f2)dt,f(1)=1,f(2)=8
Wskazówka
Rozwiązanie

Ćwiczenie 15.9.

Punkt porusza się z prędkością v po krzywej x(x,y(x)) łączącej punkty (0,1) i (1,2) z prędkością v. Prędkość (precyzyjniej: długość wektora prędkości) jest równa rzędnej punktu, w którym aktualnie się znajduje, tj. |v(x,y)|=x. Wyznaczyć krzywą, po której dany punkt przebędzie drogę od A do B w najkrótszym czasie.

Wskazówka
Rozwiązanie