Analiza matematyczna 2/Ćwiczenia 15: Zastosowania równań różniczkowych. Elementy rachunku wariacyjnego: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu – „,</math>” na „</math>,”
m Zastępowanie tekstu – „ </math>” na „</math>”
Linia 70: Linia 70:
y}(f,f',t)+\frac{\partial^2 L}{\partial x\partial
y}(f,f',t)+\frac{\partial^2 L}{\partial x\partial
y}(f,f',t)f'+\frac{\partial^2 L}{\partial
y}(f,f',t)f'+\frac{\partial^2 L}{\partial
y^2}(f,f',t)f''-\frac{\partial L}{\partial x}(f, f',t)=0, </math></center>
y^2}(f,f',t)f''-\frac{\partial L}{\partial x}(f, f',t)=0,</math></center>
które
które
możemy również zapisać bez szczegółowego zapisywania argumentów
możemy również zapisać bez szczegółowego zapisywania argumentów
Linia 183: Linia 183:
<math> (x, y, t)\mapsto L(x,y,t)</math> nie zależy od zmiennej <math> t</math>, to
<math> (x, y, t)\mapsto L(x,y,t)</math> nie zależy od zmiennej <math> t</math>, to
równanie Lagrange'a -Eulera jest równoważne równaniu
równanie Lagrange'a -Eulera jest równoważne równaniu
<math> L-f'\frac{\partial L}{\partial y}=C, </math> to jest równaniu
<math> L-f'\frac{\partial L}{\partial y}=C,</math> to jest równaniu
<center><math> L(f, f',t)-f' \frac{\partial L}{\partial y}(f, f',t)=C,
<center><math> L(f, f',t)-f' \frac{\partial L}{\partial y}(f, f',t)=C,
</math></center>
</math></center>

Wersja z 10:03, 5 wrz 2023

Zastosowania równań różniczkowych. Elementy rachunku wariacyjnego

Ćwiczenie 15.1.

W przestrzeni C1[0,1] funkcji ciągłych o ciągłej pochodnej określamy normę wzorem

f=max{|f(t)|,0t1}+max{|f(t)|,0t1}.

Wówczas odległość f od g w tej przestrzeni wynosi d(f,g)=fg.

a) Wyznaczyć odległość funkcji f(t)=t i g(t)=t2 w tej przestrzeni.

b) Wyznaczyć odległość funkcji f(t)=t i g(t)=ln(1+t) w tej

przestrzeni.
Wskazówka
Rozwiązanie

Ćwiczenie 15.2.

a) Pokazać, że równanie Lagrange'a-Eulera jest równaniem różniczkowym zwyczajnym rzędu (co najwyżej) drugiego.

b) Czy równanie Lagrange'a-Eulera jest równaniem różniczkowym

liniowym?
Wskazówka
Rozwiązanie

Ćwiczenie 15.3.

Jak wygląda równanie Lagrange'a-Eulera, jeśli funkcja Lagrange'a
(x,y,t)L(x,y,t)

nie zależy od zmiennej y? Wyznaczyć ekstremalę funkcjonału

a)J[f]=01(tsinfcosf)dt,f(0)=0,f(1)=π4;b)J[f]=01((t+1)effet)dt,f(0)=0,f(1)=1.
Wskazówka
Rozwiązanie

Ćwiczenie 15.4.

Jak wygląda równanie Lagrange'a-Eulera, jeśli funkcja L nie zależy ani od pierwszej, ani od trzeciej zmiennej? Wyznaczyć ekstremalę funkcjonału

J[f]=01((f)2+f+3)dt,f(0)=0,f(1)=5.
Wskazówka
Rozwiązanie

Ćwiczenie 15.5.

Wykazać, że jeśli funkcja Lagrange'a (x,y,t)L(x,y,t) nie zależy od zmiennej t, to równanie Lagrange'a -Eulera jest równoważne równaniu LfLy=C, to jest równaniu

L(f,f,t)fLy(f,f,t)=C,

gdzie C jest pewną stałą.

Wskazówka
Rozwiązanie

Ćwiczenie 15.6.

a) Wyznaczyć ekstremalę funkcjonału

J[f]=ab(f2f)etdt,f(a)=A,f(b)=B.

b) Czy każde zagadnienie wariacyjne ma rozwiązanie?

Wskazówka
Rozwiązanie

Ćwiczenie 15.7.

Wyznaczyć ekstremalę funkcjonału

J[f]=121+(f)2fdt,f(1)=1,f(2)=4.
Wskazówka
Rozwiązanie

Ćwiczenie 15.8.

Wyznaczyć ekstremalę funkcjonału

J[f]=12(t2(f)2+12f2)dt,f(1)=1,f(2)=8.
Wskazówka
Rozwiązanie

Ćwiczenie 15.9.

Punkt porusza się z prędkością v po krzywej x(x,y(x)) łączącej punkty (0,1) i (1,2) z prędkością v. Prędkość (precyzyjniej: długość wektora prędkości) jest równa rzędnej punktu, w którym aktualnie się znajduje, tj. |v(x,y)|=x. Wyznaczyć krzywą, po której dany punkt przebędzie drogę od A do B w najkrótszym czasie.

Wskazówka
Rozwiązanie