Analiza matematyczna 2/Ćwiczenia 1: Przestrzenie metryczne: Różnice pomiędzy wersjami
m Zastępowanie tekstu - "0:\" na "0:" |
m Zastępowanie tekstu - "<div class="thumb t(.*)"><div style="width:(.*);"> <flash>file=(.*)\.swf\|width=(.*)\|height=(.*)<\/flash> <div\.thumbcaption>(.*)<\/div> <\/div><\/div>" na "$4x$5px|thumb|$1|$6" |
||
Linia 337: | Linia 337: | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"> | ||
[[File:Am2.M01.C.R01.svg|375x375px|thumb|right|Średnice zbiorów <math>A</math> i <math>B</math> gdy <math>A\subseteq B</math>]] | |||
Mamy | Mamy | ||
Linia 439: | Linia 436: | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"> | ||
[[File:Am2.M01.C.R02.svg|375x375px|thumb|left|Rysunek do dowodu twierdzenia z ćwiczenia 1.6.]] | |||
Ponieważ, <math> \displaystyle x_1\in K(x_0,R),</math> więc z definicji kuli mamy, że | Ponieważ, <math> \displaystyle x_1\in K(x_0,R),</math> więc z definicji kuli mamy, że | ||
<math> \displaystyle d(x_0,x_1)<R,</math> a zatem | <math> \displaystyle d(x_0,x_1)<R,</math> a zatem | ||
Linia 511: | Linia 505: | ||
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"> | <div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"> | ||
[[File:Am2.M01.C.R03.svg|375x375px|thumb|right|Odległości punkrów i odległość punktu od zbioru dla metryki rzeki]] | |||
[[File:Am2.M01.C.R04.svg|375x375px|thumb|right|Odległości punkrów i odległość punktu od zbioru dla metryki kolejowej]] | |||
'''(1)''' Dla metryki dyskretnej mamy:<br> | '''(1)''' Dla metryki dyskretnej mamy:<br> | ||
'''(a)''' | '''(a)''' |
Wersja z 11:09, 3 paź 2021
Przestrzenie metryczne
Ćwiczenie 1.1.
Niech będzie dowolną liczbą naturalną oraz niech oznacza zbiór wszystkich słów długości (to znaczy ciągów liter długości ). W teorii kodowania rozważa się funkcję definiowaną przez:
(a)
Udowodnić, że jest metryką w
(jest to tak zwana metryka Hamminga).
(b)
Czy nadal będzie metryką, gdy w powyższej definicji
słowo "różne" zastąpimy przez
"takie same"?
Ćwiczenie 1.2.
Niech będzie dowolnym zbiorem niepustym oraz niech będzie dowolną iniekcją. Udowodnić, że odwzorowanie dane wzorem
jest metryką w
Ćwiczenie 1.3.
Sprawdzić, czy funkcja dana wzorem
jest metryką w Jeśli tak, to jak wyglądają kule oraz w tej metryce.
Ćwiczenie 1.4.
Niech będzie przestrzenią metryczną. Udowodnić, że dla dowolnych zbiorów zachodzi implikacja
Ćwiczenie 1.5.
Niech będzie przestrzenią metryczną. Udowodnić, że dla dowolnego oraz zachodzi Czy nierówność "" można zastąpić równością?
Ćwiczenie 1.6.
Niech będzie przestrzenią metryczną. Udowodnić, że jeśli oraz to oraz
Ćwiczenie 1.7.
Udowodnić, że kule w są zbiorami otwartymi.
Ćwiczenie 1.8.
Dany jest zbiór
oraz dwa punkty oraz
Wyznaczyć
(a) odległość punktów i ,
(b) ,
(c)
kolejno w metrykach:
dyskretnej ;
metryce rzece gdy "rzeką" jest prosta o równaniu ;
metryce kolejowej gdy "węzłem" kolejowym jest punkt
Ćwiczenie 1.9.
Niech będzie przestrzenią metryczną.
Udowodnić, że
(a) suma dowolnej rodziny zbiorów otwartych jest
zbiorem otwartym,
(b) przecięcie (część wspólna) skończonej rodziny
zbiorów otwartych jest zbiorem otwartym.