Analiza matematyczna 1/Ćwiczenia 2: Funkcje elementarne: Różnice pomiędzy wersjami
m Zastępowanie tekstu - "<div class="thumb t(.*)"><div style="width:(.*);"> <flash>file=(.*)\.swf\|width=(.*)\|height=(.*)<\/flash> <div\.thumbcaption>(.*)<\/div> <\/div><\/div>" na "$4x$5px|thumb|$1|$6" |
|||
Linia 142: | Linia 142: | ||
dla <math> \displaystyle 0\leq x\leq \pi</math>. Wobec parzystości rozważanej funkcji mamy dla <math> \displaystyle -\pi\leq x\leq\pi</math> równość <center><math> \displaystyle \arcsin(\cos x)=\frac{\pi}{2}-|x|.</math></center> <br> | dla <math> \displaystyle 0\leq x\leq \pi</math>. Wobec parzystości rozważanej funkcji mamy dla <math> \displaystyle -\pi\leq x\leq\pi</math> równość <center><math> \displaystyle \arcsin(\cos x)=\frac{\pi}{2}-|x|.</math></center> <br> | ||
[[File:an1c02.0020.svg|375x270px|thumb|right|Rysunek do ćwiczenia 2.3.(a)]] | |||
[[File:an1c02.0030.svg|375x270px|thumb|right|Rysunek do ćwiczenia 2.3.(a)]] | |||
Wersja z 11:10, 3 paź 2021
Funkcje elementarne
Ćwiczenie 2.1.
Dana jest funkcja afiniczna . Wyznaczyć:
a) odwrotność tej funkcji,
b) funkcję odwrotną do ,
c) złożenie , , , .
d) Czy istnieje malejąca funkcja
afiniczna taka, że ?
Ćwiczenie 2.2.
Dana jest homografia
. Wyznaczyć:
a) odwrotność tej homografii,
b) homografię odwrotną,
c) złożenie , , oraz .
d) Czy istnieje homografia taka, że
?
Ćwiczenie 2.3.
Wyrazić w prostszej postaci:
a) , ,
b) , ,
c) , ,
d) , ,
e) , .
Ćwiczenie 2.4.
Wykazać, że dla dowolnych liczb ,
zachodzą równości:
a)
b)
Ćwiczenie 2.5.
a) Niech dla . Wykaż, że , oraz
dla .
b) Wykazać, że funkcja jest wielomianem
zmiennej , dla .
Ćwiczenie 2.6.
a) Niech dla . Wykaż, że , oraz
dla .
b) Wykazać, że funkcja jest wielomianem
zmiennej , dla .
c) Wykazać, że dla dowolnej liczby istnieje
wielomian taki, że oraz są restrykcjami -
odpowiednio do przedziałów oraz -
wielomianu .