Metody programowania /StosyKolejki: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Pch (dyskusja | edycje)
Nie podano opisu zmian
Pch (dyskusja | edycje)
Linia 21: Linia 21:
== Tablicowa implementacja stosów ==
== Tablicowa implementacja stosów ==
Stosy będziemy reprezentować jako parę (tablica T, indeks p pierwszego wolnego miejsca). Włożenie nowego elementu będzie polegać na wstawieniu go pod indeksem p i zwiększenie indeksu p o 1. Pobranie będzie polegało na zmniejszeniu indeksu p o 1 i odczytaniu znajdującej się tam wartości. Utworzenie pustego stosu będzie sprowadzało się do inicjalizacji wskaźnika na 1, a sprawdzenie, czy stos jest pusty na sprawdzeniu, czy indeks p jest równy 1. Oto komplet procedur stosowych:
Stosy będziemy reprezentować jako parę (tablica T, indeks p pierwszego wolnego miejsca). Włożenie nowego elementu będzie polegać na wstawieniu go pod indeksem p i zwiększenie indeksu p o 1. Pobranie będzie polegało na zmniejszeniu indeksu p o 1 i odczytaniu znajdującej się tam wartości. Utworzenie pustego stosu będzie sprowadzało się do inicjalizacji wskaźnika na 1, a sprawdzenie, czy stos jest pusty na sprawdzeniu, czy indeks p jest równy 1. Oto komplet procedur stosowych:
===Stosy tablicowo===
{{kotwica|kod_zrodlowy|}}
'''type''' stos = '''record'''
T : '''array'''[1..n] '''of''' typ;  //Zakładamy, że wszystkiego elementy na stosie będą tego samego typu
p : Integer              //indeks pierwszego wolnego elementu
'''end'''
'''procedure''' MakeEmpty('''var''' s : stos); //Inicjalizacja stosu pustego
'''begin''' s.p:=1 '''end''';
'''function''' Empty('''const''' s : stos) : Boolean; //Sprawdzenie pustości stosu
'''begin''' Empty := s.p=1 '''end''';
'''procedure''' Push('''var''' s : stos; x:typ); //Włożenie na stos elementu o wartości x
'''begin'''
  s.T[s.p]:=x;
  s.p:=s.p+1
'''end''';
'''procedure''' Pop('''var''' s : stos; '''var''' x:typ); //Zdjęcie ze stosu najświeższego elementu
'''begin'''                                  //i przypisanie jego wartości parametrowi x
  x:=s.T[s.p];
  s.p:=s.p-1
'''end''';

Wersja z 14:45, 15 gru 2008

Spośród wielu struktur danych używanych w informatyce dwie mają szczególne znaczenie. Charakteryzuje je prostota koncepcji, łatwość implementacji i przydatność w rozwiązywaniu rozmaitych problemów algorytmicznych. Są to stosy i kolejki. Ogólnie chodzi o niezwykle ważny w informatyce problem reprezentacji zbiorów skończonych. Bardzo często bowiem potrzebujemy przechowywać zbiory elementów pewnej przestrzeni, potencjalnie bardzo dużej (np. wszystkie możliwe rezerwacje lotnicze dla wszystkich ludzi na świecie) w taki sposób, żeby efektywnie móc wykonywać podstawowe trzy operacje:

  • sprawdzenie, czy dany element znajduje się w zbiorze
  • dodanie elementu do zbioru
  • usunięcie elementu ze zbioru.

Problem ten dokładnie jest opisany w kursie "Algorytmy i struktury danych", tu jednak chcemy zająć się jego wersją, związaną z pewną specyfiką, gdy zależy nam na wykonaniu jakiejś czynności dla każdego elementu zbioru i to w kolejności narzuconej przez nasze wymagania. O ile na wkładanie elementu do zbioru nie mamy wpływu - po prostu trzeba akceptować każde żądanie - o tyle w przypadku pobierania elementów ze zbioru mamy pewną dowolność. Podstawowe dwie strategie, które będziemy tu rozważać, to

  • strategia stosowa, kiedy pobieramy elementy w kolejności odwrotnej do wkładania, czyli jako pierwszy będzie pobrany element, który został włożony jako ostatni (LIFO: Last-In-First-Out)
  • strategia kolejkowa, kiedy pobieramy elementy w kolejności zgodnej z kolejnością wkładania, czyli jako pierwszy będzie pobrany element, który został włożony najdawniej (FIFO: First-In-First-Out)

Podstawowe operacje zatem, które będziemy rozważali będą następujące:

  • Utwórz pusty zbiór
  • Sprawdź, czy zbiór jest pusty (chodzi m.in. o zabezpieczenie przed próbą pobrania elementu z pustego zbioru)
  • Dodaj element do zbioru
  • Pobierz element ze zbioru, usuwając go z niego.

W zależności od tego, czy stosujemy strategię stosową, czy listową, zastosujemy różne implementacje. Zacznijmy od stosów.

Przedstawimy tu dwie najpopularniejsze implementacje stosów: tablicową i listową.

Tablicowa implementacja stosów

Stosy będziemy reprezentować jako parę (tablica T, indeks p pierwszego wolnego miejsca). Włożenie nowego elementu będzie polegać na wstawieniu go pod indeksem p i zwiększenie indeksu p o 1. Pobranie będzie polegało na zmniejszeniu indeksu p o 1 i odczytaniu znajdującej się tam wartości. Utworzenie pustego stosu będzie sprowadzało się do inicjalizacji wskaźnika na 1, a sprawdzenie, czy stos jest pusty na sprawdzeniu, czy indeks p jest równy 1. Oto komplet procedur stosowych:

Stosy tablicowo

type stos = record 
T : array[1..n] of typ;   //Zakładamy, że wszystkiego elementy na stosie będą tego samego typu
p : Integer              //indeks pierwszego wolnego elementu
end
procedure MakeEmpty(var s : stos); //Inicjalizacja stosu pustego
begin s.p:=1 end;
function Empty(const s : stos) : Boolean; //Sprawdzenie pustości stosu
begin Empty := s.p=1 end;
procedure Push(var s : stos; x:typ); //Włożenie na stos elementu o wartości x
begin 
 s.T[s.p]:=x; 
 s.p:=s.p+1
end;
procedure Pop(var s : stos; var x:typ); //Zdjęcie ze stosu najświeższego elementu 
begin                                   //i przypisanie jego wartości parametrowi x
 x:=s.T[s.p]; 
 s.p:=s.p-1
end;