Logika dla informatyków/Ćwiczenia 1: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Tprybick (dyskusja | edycje)
Nie podano opisu zmian
Tprybick (dyskusja | edycje)
Nie podano opisu zmian
Linia 38: Linia 38:




<span id=cwicz_5> Ćwiczenie 5 </span>
<span id=cwicz_5> Ćwiczenie 5 </span><br>
Znależć formułę zdaniową&nbsp;<math>\var\varphi</math>, która jest spełniona dokładnie przy wartościowaniach&nbsp;<math>\varrho</math> spełniających warunki:
Znależć formułę zdaniową&nbsp;<math>\var\varphi</math>, która jest spełniona dokładnie przy wartościowaniach&nbsp;<math>\varrho</math> spełniających warunki:


Linia 47: Linia 47:




<span id=cwicz_6> Ćwiczenie 6 </span>
<span id=cwicz_6> Ćwiczenie 6 </span><br>
<span id="udacczleka" \> Udowodnić, że dla dowolnej funkcji <math>f:\{0,1\}^k\to\{0,1\}</math>istnieje formuła&nbsp;<math>\var\varphi</math>, w której występują tylko spójniki <math>\to</math> i <math>\bot</math>oraz zmienne zdaniowe ze zbioru <math>\{p_1,\ldots, p_k\}</math>, o tej własności, że dla dowolnego wartościowania zdaniowego&nbsp;<math>\varrho</math> zachodzi równość<math>[[\var\varphi]]\varrho = f(\varrho(p_1),\ldots, \varrho(p_k))</math>. (Inaczej mówiąc, formuła&nbsp;<math>\var\varphi</math> definiuje funkcję zerojedynkową&nbsp;<math>f</math>.)  
<span id="udacczleka" \> Udowodnić, że dla dowolnej funkcji <math>f:\{0,1\}^k\to\{0,1\}</math>istnieje formuła&nbsp;<math>\var\varphi</math>, w której występują tylko spójniki <math>\to</math> i <math>\bot</math>oraz zmienne zdaniowe ze zbioru <math>\{p_1,\ldots, p_k\}</math>, o tej własności, że dla dowolnego wartościowania zdaniowego&nbsp;<math>\varrho</math> zachodzi równość<math>[[\var\varphi]]\varrho = f(\varrho(p_1),\ldots, \varrho(p_k))</math>. (Inaczej mówiąc, formuła&nbsp;<math>\var\varphi</math> definiuje funkcję zerojedynkową&nbsp;<math>f</math>.)  


Linia 53: Linia 53:




<span id=cwicz_1> Ćwiczenie 7 </span>
<span id=cwicz_1> Ćwiczenie 7 </span><br>
<span id="krecic">&nbsp;</span> Niech <math>X</math> będzie dowolnym zbiorem niepustym. Dowolną funkcję <math>v:\mbox{\small ZZ}\to\pot X</math> nazwijmy ''wartościowaniem'' w&nbsp;zbiorze <math>\pot X</math>. Każdej formule zdaniowej&nbsp;<math>\var\varphi</math> przypiszemy teraz pewien podzbiór <math>[[\var\varphi]]\warpi</math> zbioru&nbsp;<math>X</math>, który nazwiemy jej ''wartością'' przy wartościowaniu&nbsp;<math>v</math>.
<span id="krecic">&nbsp;</span> Niech <math>X</math> będzie dowolnym zbiorem niepustym. Dowolną funkcję <math>v:\mbox{\small ZZ}\to\pot X</math> nazwijmy ''wartościowaniem'' w&nbsp;zbiorze <math>\pot X</math>. Każdej formule zdaniowej&nbsp;<math>\var\varphi</math> przypiszemy teraz pewien podzbiór <math>[[\var\varphi]]\warpi</math> zbioru&nbsp;<math>X</math>, który nazwiemy jej ''wartością'' przy wartościowaniu&nbsp;<math>v</math>.


Linia 65: Linia 65:




<span id=cwicz_8> Ćwiczenie 8 </span>
<span id=cwicz_8> Ćwiczenie 8 </span><br>
<span id="wziawszy" \> Uzupełnić szczegóły dowodu&nbsp;[[Logika dla informatyków/Rachunek zdań#fakt17|Faktu 1.7]].Pokazać, że długość postaci normalnej może wzrosnąć wykładniczo w stosunku do rozmiaru formuły początkowej.
<span id="wziawszy" \> Uzupełnić szczegóły dowodu&nbsp;[[Logika dla informatyków/Rachunek zdań#fakt17|Faktu 1.7]].Pokazać, że długość postaci normalnej może wzrosnąć wykładniczo w stosunku do rozmiaru formuły początkowej.




<span id=cwicz_9> Ćwiczenie 9 </span>
<span id=cwicz_9> Ćwiczenie 9 </span><br>
Niech formuła <math>\var\varphi\to\psi</math> będzie tautologią rachunku zdań. Znaleźć taką formułę&nbsp;<math>\vartheta</math>, że:
Niech formuła <math>\var\varphi\to\psi</math> będzie tautologią rachunku zdań. Znaleźć taką formułę&nbsp;<math>\vartheta</math>, że:
*Zarówno <math>\var\varphi\to\vartheta</math> jak i <math>\vartheta\to\psi</math> są tautologiami rachunku zdań.
*Zarówno <math>\var\varphi\to\vartheta</math> jak i <math>\vartheta\to\psi</math> są tautologiami rachunku zdań.
Linia 76: Linia 76:




<span id=cwicz_10> Ćwiczenie 10 </span>
<span id=cwicz_10> Ćwiczenie 10 </span><br>
Niech <math>\var\varphi(p)</math> będzie pewną formułą, w której występuje zmienna zdaniowa&nbsp;<math>p</math> i niech <math>q</math> będzie zmienną zdaniową niewystępującą w&nbsp;<math>\var\varphi(p)</math>. Przez&nbsp;<math>\var\varphi(q)</math> oznaczmy formułę powstałą z&nbsp;<math>\var\varphi(p)</math> przez zamianę wszystkich&nbsp;<math>p</math> na&nbsp;<math>q</math>. Udowodnić, że jeśli
Niech <math>\var\varphi(p)</math> będzie pewną formułą, w której występuje zmienna zdaniowa&nbsp;<math>p</math> i niech <math>q</math> będzie zmienną zdaniową niewystępującą w&nbsp;<math>\var\varphi(p)</math>. Przez&nbsp;<math>\var\varphi(q)</math> oznaczmy formułę powstałą z&nbsp;<math>\var\varphi(p)</math> przez zamianę wszystkich&nbsp;<math>p</math> na&nbsp;<math>q</math>. Udowodnić, że jeśli



Wersja z 11:10, 20 wrz 2006

Ćwiczenie 1 Zbadać, czy następujące formuły są tautologiami rachunku zdańi czy są spełnialne:

  1. (pr)(qs)(¬p¬s)(¬p¬q);
  2. (pq)(qr);
  3. ((pq)r)¬(((qr)r)r));
  4. (pq)(¬pr)(r¬q);
  5. ((¬pq)r)¬(pq);
  6. p(¬pq)(¬p¬q);
  7. (pq)(p¬q);
  8. qr(pqpr);
  9. (pqr)(q(¬ps))(¬sqr)q.


Ćwiczenie 2 Czy następujące zbiory formuł są spełnialne?

  1. {p¬q,q¬r,r¬p};
  2. {pq,qr,rs¬q};
  3. {¬(¬qp),p¬r,q¬r};
  4. {sq,p¬q,¬(sp),s}.


Ćwiczenie 3 Czy zachodzą następujące konsekwencje?

  1. pq¬r,pr¬q;
  2. pq,p(qr)pr;
  3. p(qr),pqqr;
  4. (pq)r,¬pr;
  5. (pq)r,¬rp;
  6. pq,r¬qr¬p.


Ćwiczenie 4
Dla dowolnej formuły Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} niech Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \hat{\var\varphi}} oznacza dualizację formuły Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} , tzn. formułę powstającą z Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi } przez zastąpienie każdego wystąpienia symbolem orazkażdego wystąpienia symbolem .

(i) Dowieść,że Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} jest tautologią wtedy i tylko wtedy, gdy Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \neg\hat{\var\varphi}} jest tautologią.

(ii)Dowieść, że Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi\leftrightarrow\psi} jest tautologią wtedy i tylko wtedy, gdy Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \hat{\var\varphi}\leftrightarrow\hat{\psi}} jest tautologią.


Ćwiczenie 5
Znależć formułę zdaniową Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} , która jest spełniona dokładnie przy wartościowaniach ϱ spełniających warunki:

  1. Dokładnie dwie spośród wartości ϱ(p), ϱ(q) i ϱ(r) są równe 1.
  2. ϱ(p)=ϱ(q)=ϱ(r).

Rozwiązanie: Można to robić na różne sposoby, ale najprościej po prostu wypisać alternatywę koniunkcji, np. (pq¬r)(p¬qr).


Ćwiczenie 6
Udowodnić, że dla dowolnej funkcji f:{0,1}k{0,1}istnieje formuła Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} , w której występują tylko spójniki i oraz zmienne zdaniowe ze zbioru {p1,,pk}, o tej własności, że dla dowolnego wartościowania zdaniowego ϱ zachodzi równośćParser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle [[\var\varphi]]\varrho = f(\varrho(p_1),\ldots, \varrho(p_k))} . (Inaczej mówiąc, formuła Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} definiuje funkcję zerojedynkową f.)

Wskazówka: Indukcja ze względu na k.


Ćwiczenie 7
  Niech X będzie dowolnym zbiorem niepustym. Dowolną funkcję Parser nie mógł rozpoznać (błąd składni): {\displaystyle v:\mbox{\small ZZ}\to\pot X} nazwijmy wartościowaniem w zbiorze Parser nie mógł rozpoznać (nieznana funkcja „\pot”): {\displaystyle \pot X} . Każdej formule zdaniowej Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} przypiszemy teraz pewien podzbiór Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle [[\var\varphi]]\warpi} zbioru X, który nazwiemy jej wartością przy wartościowaniu v.

  • [[]]v= oraz [[top]]v=X;
  • [[p]]v=v(p), gdy p jest symbolem zdaniowym;
  • Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle [[\neg\var\varphi]]v= X-[[{\var\varphi]]v} ;
  • Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle [[\var\varphi\vee\psi ]]v=[[\var\varphi]]v \cup [[\psi]]v} ;
  • Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle [[\var\varphi\wedge\psi ]]v=[[\var\varphi]]v \cap [[\psi]]v} ;
  • Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle [[\var\varphi\to\psi]]v= (X-[[\var\varphi]]v) \cup[[\psi]]v} .

Udowodnić, że formuła Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} jest tautologią rachunku zdań \wtw, gdy jest prawdziwaParser nie mógł rozpoznać (nieznana funkcja „\pot”): {\displaystyle \pot X} , tj. gdy dla dowolnego vjej wartością jest cały zbiór X.


Ćwiczenie 8
Uzupełnić szczegóły dowodu Faktu 1.7.Pokazać, że długość postaci normalnej może wzrosnąć wykładniczo w stosunku do rozmiaru formuły początkowej.


Ćwiczenie 9
Niech formuła Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi\to\psi} będzie tautologią rachunku zdań. Znaleźć taką formułę ϑ, że:

  • Zarówno Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi\to\vartheta} jak i ϑψ są tautologiami rachunku zdań.
  • W formule ϑ występują tylko te zmienne zdaniowe,które występują zarówno w Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} jak i w ψ.


Ćwiczenie 10
Niech Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi(p)} będzie pewną formułą, w której występuje zmienna zdaniowa p i niech q będzie zmienną zdaniową niewystępującą w Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi(p)} . Przez Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi(q)} oznaczmy formułę powstałą z Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi(p)} przez zamianę wszystkich p na q. Udowodnić, że jeśli

Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi(p), \var\varphi(q) \models p\leftrightarrow q}

to istnieje formuła ψ, nie zawierająca zmiennych p ani q,taka że

Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi(p)\models p\leftrightarrow\psi} .