Test GR3: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Rogoda (dyskusja | edycje)
Nie podano opisu zmian
Rogoda (dyskusja | edycje)
Nie podano opisu zmian
Linia 226: Linia 226:
:; +
:; +
<quiz type="exclusive">
<quiz type="exclusive">
Preporządek jest kategorią lokalnie małą.
Preporządek jest kategorią lokalnie małą.


<option>Prawda</option>
<rightoption>Prawda</rightoption>
<option>Fałsz</option>
<wrongoption>Fałsz</wrongoption>
</quiz>
</quiz>


:; -
:; -
<quiz type="exclusive">
<quiz type="exclusive">
Preporządek to taka kategoria, w której nie istnieją dwa różne
Preporządek to taka kategoria, w której nie istnieją dwa różne
obiekty izomorficzne.
obiekty izomorficzne.


<option>Prawda</option>
<wrongoption>Prawda</wrongoption>
<option>Fałsz</option>
<rightoption>Fałsz</rightoption>
</quiz>
</quiz>


:; +
:; +
<quiz type="exclusive">
<quiz type="exclusive">
Preporządek jest częściowym porządkiem wtedy i tylko wtedy, gdy każde
Preporządek jest częściowym porządkiem wtedy i tylko wtedy, gdy każde
dwa obiekty izomorficzne są sobie równe.
dwa obiekty izomorficzne są sobie równe.


<option>Prawda</option>
<rightoption>Prawda</rightoption>
<option>Fałsz</option>
<wrongoption>Fałsz</wrongoption>
</quiz>
</quiz>


:; +
:; +
<quiz type="exclusive">
<quiz type="exclusive">
Rachunek lambda jako kategoria jest lokalnie mała.
Rachunek lambda jako kategoria jest lokalnie mała.


<option>Prawda</option>
<rightoption>Prawda</rightoption>
<option>Fałsz</option>
<wrongoption>Fałsz</wrongoption>
</quiz>
</quiz>


:; -
:; -
<quiz type="exclusive">
<quiz type="exclusive">
<math>\displaystyle \mathbf{Set}</math> jest obiektem <math>\displaystyle \mathbf{Cat}</math>.
<math>\displaystyle \mathbf{Set}</math> jest obiektem <math>\displaystyle \mathbf{Cat}</math>.


<option>Prawda</option>
<wrongoption>Prawda</wrongoption>
<option>Fałsz</option>
<rightoption>Fałsz</rightoption>
</quiz>
</quiz>


:; +
:; +
<quiz type="exclusive">
<quiz type="exclusive">
W każdej kategorii niepustej istnieją izomorfizmy.
W każdej kategorii niepustej istnieją izomorfizmy.
 
; Pyt.2
<rightoption>Prawda</rightoption>
:
<wrongoption>Fałsz</wrongoption>
<option>Prawda</option>
<option>Fałsz</option>
</quiz>
</quiz>


----------------------------------------------------
; Pyt.2
:; +
:; +
<quiz type="exclusive">
<quiz type="exclusive">

Wersja z 21:38, 13 wrz 2006

--- przykładowo jak zrobić pierwsze pytanie z pierwszego modułu ---

Dowolna kategoria składa się ze zbioru obiektów i zbioru morfizmów, które spełniają odpowiednie aksjomaty dotyczące złożenia, identyczności, dziedzin i kodziedzin morfizmów.

Prawda

Fałsz


Poniższe zdania twierdzące mogą być albo prawdziwe (oznaczone jako "+"), albo fałszywe (oznaczane "-"). Zbiór wszystkich pytań podzielono na 15 części, odpowiadających kolejnym modułom.

Pyt.1

<option>Prawda</option> <option>Fałsz</option> </quiz>


Dowolna kategoria składa się ze zbioru obiektów i zbioru morfizmów, które spełniają odpowiednie aksjomaty dotyczące złożenia, identyczności, dziedzin i kodziedzin morfizmów.

Prawda

Fałsz


Dowolna kategoria może być interpretowana jako pewnien specjalny graf skierowany.

Prawda

Fałsz


Dowolna kategoria może być interpretowana jako pewna algebra.

Prawda

Fałsz


Kategoria może być jednocześnie mała i lokalnie mała.

Prawda

Fałsz


Kategoria może być jednocześnie mała i duża.

Prawda

Fałsz


Kategoria może być jednocześnie lokalnie mała i duża.

Prawda

Fałsz


Kategoria 𝐂, w której dla każdego obiektu A𝐂0 istnieje dokładnie jeden morfizm typu AA nazywamy konkretną.

Prawda

Fałsz


Kategoria 𝐂, w której dla każdego obiektu A𝐂0 istnieje dokładnie jeden morfizm typu AA nazywamy dyskretną.

Prawda

Fałsz


Kategoria 𝐂, w której dla każdego obiektu A𝐂0 istnieje dokładnie jeden morfizm typu AA nazywamy monoidem.

Prawda

Fałsz


Kategoria 𝐂, w której dla każdego obiektu A𝐂0 istnieje dokładnie jeden morfizm typu AA nazywamy posetem.

Prawda

Fałsz


Nie istnieje kategoria, w której jest 5 obiektów i 6 morfizmów.

Prawda

Fałsz


Nie istnieje kategoria, w której jest 6 obiektów i 5 morfizmów.

Prawda

Fałsz


Nie istnieje kategoria, w której wszystkie obiekty są izomorficzne.

Prawda

Fałsz


Nie istnieje kategoria, w której wszystkie morfizmy mają tę samą kodziedzinę.

Prawda

Fałsz


Kategoria 𝐑𝐞𝐥 jest lokalnie mała i duża.

Prawda

Fałsz


Liczby naturalne (,) są kategorią dyskretną.

Prawda

Fałsz


Kategoria 𝐂𝐚𝐭 jest lokalnie mała.

Prawda

Fałsz


Kategorie dyskretne są lokalnie małe.

Prawda

Fałsz


Kategorie konkretne są lokalnie małe.

Prawda

Fałsz


Grupa (G,,e) to kategoria z jednym obiektem.

Prawda

Fałsz


𝐆𝐫𝐩 to kategoria, w której wszystkie obiekty są izomorficzne.

Prawda

Fałsz


Dowolne dwa izomorficzne obiekty w 𝐒𝐞𝐭 są równoliczne.

Prawda

Fałsz


Preporządek jest z definicji taką kategorią, w której między dowolnymi dwoma obiektami istnieje co najwyżej jeden morfizm.

Prawda

Fałsz

+

Preporządek jest kategorią lokalnie małą.

Prawda

Fałsz

-

Preporządek to taka kategoria, w której nie istnieją dwa różne obiekty izomorficzne.

Prawda

Fałsz

+

Preporządek jest częściowym porządkiem wtedy i tylko wtedy, gdy każde dwa obiekty izomorficzne są sobie równe.

Prawda

Fałsz

+

Rachunek lambda jako kategoria jest lokalnie mała.

Prawda

Fałsz

-

𝐒𝐞𝐭 jest obiektem 𝐂𝐚𝐭.

Prawda

Fałsz

+

W każdej kategorii niepustej istnieją izomorfizmy.

Prawda

Fałsz

----------------------------------------------------
Pyt.2
+

Monomorfizmem w 𝐒𝐞𝐭 jest każda funkcja injektywna.

Prawda

Fałsz

-

Monomorfizmem w 𝐌𝐨𝐧 jest każda funkcja injektywna.

Prawda

Fałsz

+

Monomorfizmem w posecie (P,) jest każda ze strzałek.

Prawda

Fałsz

+

Monomorfizmem w dowolnej kategorii 𝐂 jest każdy epimorfizm w

𝐂op.

Prawda

Fałsz

+

W kategoriach dyskretnych monomorfizmy są izomorfizmami.

Prawda

Fałsz

+

W kategoriach dyskretnych monomorfizmy są epimorfizmami.

Prawda

Fałsz

+

Istnieją kategrie konkretne, w których każdy epimorfizm

jest surjekcją.

Prawda

Fałsz

-

Istnieją kategrie konkretne, w których żaden epimorfizm

nie jest surjekcją.

Prawda

Fałsz

+

Istnieją kategorie konkretne, w których pewne epimorfizmy

nie są surjekcjami.

Prawda

Fałsz

+

Epimorfizm to pojęcie dualne do monomorfizmu.

Prawda

Fałsz

+

Izomorfizm to pojęcie samodualne (tj. dualne do samego

siebie).

Prawda

Fałsz

-

Monomorfizm to pojęcie samodualne.

Prawda

Fałsz

+

W 𝐓𝐨𝐩 epimorfizmami są ciągłe surjekcje.

Prawda

Fałsz

-

W kategorii przestrzeni topologicznych Hausdorffa i

funkcji ciągłych epimorfizmy to dokładnie ciągłe surjekcje.

Prawda

Fałsz

+

W preporządku sekcje są izomorfizmami.

Prawda

Fałsz

+

W preporządku pojęcia: sekcji, izomorfizmu, retrakcji,

monomorfizmu, epimorfizmu pokrywają się.

Prawda

Fałsz

+

Funktory wierne zachowują sekcje.

Prawda

Fałsz

+

Retrakcje w 𝐒𝐞𝐭 to dokładnie epimorfizmy.

Prawda

Fałsz

-

Jeśli funktor nie jest wierny, to nie musi zachowywać

retrakcji.

Prawda

Fałsz

-

Każda sekcja jest monomorfizmem i epimorfizmem.

Prawda

Fałsz

+

Każda sekcja jest monomorfizmem.

Prawda

Fałsz

+

W kategorii dyskretnej każda sekcja jest epimorfizmem.

Prawda

Fałsz

-

Każdy wierny funktor odzwierciedla sekcje i retrakcje.

Prawda

Fałsz

+

W 𝐂𝐚𝐭 istnieją epimorfizmy, które nie są

surjekcjami.

Prawda

Fałsz

+

W 𝐂𝐚𝐭 istnieją epimorfizmy, które nie są

retrakcjami.

Prawda

Fałsz

-

Każdy funktor zachowuje monomorfizmy.

Prawda

Fałsz

-

Każdy funktor pełny zachowuje izomorfizmy.

Prawda

Fałsz

+

Homfunktory kowariantne zachowują i odzwierciedlają monomorfizmy.

Prawda

Fałsz

-

Mono retrakcja jest identycznością.

Prawda

Fałsz

+

Mono retrakcja jest izomorfizmem.

Prawda

Fałsz

-

Retrakt dziedziny ciągłej jest algebraiczny.

Prawda

Fałsz

+

Retrakt dziedziny algebraicznej jest algebraiczny.

Prawda

Fałsz

+

W parze e-p zanurzenie e jest injekcją.

Prawda

Fałsz

-

W parze e-p projekcja jest injekcją.

Prawda

Fałsz

+

W 𝐑𝐞𝐥 obiektem początkowym jest relacja

pusta.

Prawda

Fałsz

+

W 𝐆𝐫𝐩 obiektem początkowym jest każdy obiekt

końcowy

Prawda

Fałsz

+

W 𝐏𝐨𝐬 nie istnieje obiekt, który jest

jednocześnie początkowy i końcowy.

Prawda

Fałsz

+

Każde dwa obiekty początkowe w dowolnej kategorii są

izomorficzne.

Prawda

Fałsz

-

𝐂𝐚𝐭 nie ma obiektu początkowego.

Prawda

Fałsz

-

Każda kategoria dyskretna jest obiektem końcowym w

𝐂𝐚𝐭.

Prawda

Fałsz

+

Istnieją małe kategorie, w których nie ma obiektów

początkowych, ani końcowych.

Prawda

Fałsz

+

Jeśli w danej kategorii pewien obiekt początkowy i pewien obiekt końcowy

są izomorficzne, to kategoria ta posiada tylko jeden morfizm.

Prawda

Fałsz

+

Funkcja następnik succ: jest uogólnionym elementem .

Prawda

Fałsz

+

Każdy element jest uogólnonym elementem, ale nie

odwrotnie.

Prawda

Fałsz

+

W odcinku ((0,1),) (jako kategorii) istnieje kontinuum elementów.

Prawda

Fałsz

+

W odcinku ([0,1],) istnieje kontinuum elementów.

Prawda

Fałsz

-

W odcinku ((0,1),) istnieje kontinuum elementów

uogólnionych.

Prawda

Fałsz

+

Każdy element, którego kodziedziną jest obiekt końcowy

jest identycznością.

Prawda

Fałsz

+

Każdy element, którego kodziedziną jest obiekt początkowy

jest identycznością obiektu początkowego.

Prawda

Fałsz

+

Każdy element jest monomorfizmem.

Prawda

Fałsz

+

Każdy element jest sekcją.

Prawda

Fałsz

-

Każdy element jest retrakcją.

Prawda

Fałsz

-

Każdy element jest izomorfizmem.

Prawda

Fałsz

-

Złożenie elementów jest elementem.

Pyt.3

Prawda

Fałsz

+

Aksjomaty kategorii są samodualne.

Prawda

Fałsz

-

Pojęcie retrakcji jest samodualne.

Prawda

Fałsz

-

Pojęcie obiektu końcowego jest samodualne.

Prawda

Fałsz

+

Pojęcie izomorfizmu jest samodualne.

Prawda

Fałsz

-

Niech 𝐂 będzie kategorią z produktami. Niech

A,B,C,D𝐂0 i f,g𝐂1. Jeśli A×BC×D, to AC i BD.

Prawda

Fałsz

-

Niech 𝐂 będzie kategorią z produktami. Niech

A,B,C,D𝐂0 i f,g𝐂1. Jeśli A×BB×A, to AB.

Prawda

Fałsz

+

Niech 𝐂 będzie kategorią z produktami. Niech

A,B,C,D𝐂0 i f,g𝐂1. Jeśli A×𝟏𝟏, to A𝟏.

Prawda

Fałsz

+

Jeśli f,g są sekcjami, to f×g też.

Prawda

Fałsz

+

Jeśli f,g są retrakcjami, to f×g też.

Prawda

Fałsz

+

Jeśli f,g są izomorfizmami, to f×g też.

Prawda

Fałsz

-

Jeśli f,g są monomorfizmami, to f×g też.

Prawda

Fałsz

+

Lambda rachunek jest kategorią z produktami.

Prawda

Fałsz

+

Każdy zbiór jest koproduktem pewnych dwóch innych zbiorów

w 𝐒𝐞𝐭.

Prawda

Fałsz

+

W posecie (P,) każdy produkt a×b dla a,bP

(o ile istnieje) jest ekwalizatorem wtedy i tylko wtedy, gdy a=b.

Prawda

Fałsz

-

Każdy ekwalizator jest epimorfizmem.

Prawda

Fałsz

-

W kategorii z pulbakami zawsze istnieją obiekty początkowe.

Prawda

Fałsz

+

W kategorii z pulbakami i obiektem końcowym zawsze istnieją ekwalizatory.

Prawda

Fałsz

-

Każda sekcja jest ekwalizatorem.

Prawda

Fałsz

+

Pulbak epimorfizmu jest epimorfizmem.

Prawda

Fałsz

+

Pulbak izomorfizmu jest izomorfizmem.

Prawda

Fałsz

+

Każda kategoria z koproduktami i koekwalizatorami posiada

pushouty.

Prawda

Fałsz

-

Każda kategoria z obiektem początkowym i koekwalizatorami

posiada obiekt końcowy.

Pyt.4

Prawda

Fałsz

+

Zbiory skończone i funkcje tworzą kategorię kartezjańsko

zamkniętą.

Prawda

Fałsz

-

Przestrzenie topologiczne i funkcje ciągłe tworzą

kategorię kartezjańsko zamkniętą.

Prawda

Fałsz

+

Lambda rachunek (z dodanym elementem końcowym) jest kategorią kartezjańsko zamkniętą.

Prawda

Fałsz

-

Algebry Boole'a jako kategorie są kozupełne.

Prawda

Fałsz

+

Algebry Boole'a są dystrybutywne.

Prawda

Fałsz

+

Algebry Heytinga jako kategorie są kartezjańsko zamknięte.

Prawda

Fałsz

-

Grupy abelowe i homomorfizmy grup są kartezjańsko

zamknięte.

Prawda

Fałsz

-

Kategorie dyskretne są kartezjańsko zamknięte.

Prawda

Fałsz

+

Algebra Heytinga jest algebrą Boole'a wtedy i tylko

wtedy, gdy każdy element posiada element przeciwny.

Prawda

Fałsz

-

Kategoria dziedzin ciągłych i funkcji ciągłych w sensie

Scotta jest kartezjańsko zamknięta.

Prawda

Fałsz

+

Dla dowolnej topologii krata zbiorów otwartych jest

algebrą Heytinga.

Prawda

Fałsz

-

Dla dowolnej topologii krata zbiorów otwartych jest

algebrą Boole'a.

Prawda

Fałsz

+

Zbiory otwarte, regularne w dowolnej topologii tworzą

algebrę Boole'a.

Prawda

Fałsz

-

Każda algebra Boole'a jest izomorficzna ze zbiorem

podzbiorów pewnego zbioru.

Prawda

Fałsz

+

Monomorfizmy o wspólnej kodziedzinie uporządkujmy

relacją "faktoryzacji", tj. fg wtw, gdy istnieje h tak, że gh=f. Zdefiniujmy relację równoważności R między monomorfizmami o wspólnej kodziedzinie jako: fg wtw, gdy fg i gf. Uporządkujmy zbiór klas abstrakcji tej relacji jako: [f][g] wtw, gdy fg. Czy ten częściowy porządek jest algebrą Heytinga?

Prawda

Fałsz

+

Kategoria funkcji między zbiorami 𝐒𝐞𝐭 jest kartezjańsko zamknięta.

Prawda

Fałsz

-

Kategoria porządków liniowych i funkcji monotonicznych

jest kartezjańsko zamknięta.

Prawda

Fałsz

-

W kategorii kartezjańsko zamkniętej 𝐂 funktor podnoszenia do potęgi [A,] zachowuje

koprodukty (tutaj A𝐂0).

Prawda

Fałsz

+

W kategorii kartezjańsko zamkniętej 𝐂 funktor podnoszenia do potęgi [A,] zachowuje

obiekt końcowy (tutaj A𝐂0).

Pyt.5

Prawda

Fałsz

+

Funktory tego samego typu wraz z ich transformacjami

naturalnymi tworzą kategorię.

Prawda

Fałsz

+

𝐓𝐨𝐩 jest konkretna.

Prawda

Fałsz

+

𝐑𝐞𝐥 jest konkretna.

Prawda

Fałsz

+

Funktor List:𝐒𝐞𝐭𝐌𝐨𝐧

zachowuje koprodukty.

Prawda

Fałsz

-

Funktor List:𝐒𝐞𝐭𝐌𝐨𝐧

zachowuje obiekt końcowy.

Prawda

Fałsz

+

Funktor List:𝐒𝐞𝐭𝐌𝐨𝐧 zachowuje obiekt początkowy.

Prawda

Fałsz

-

Funktor zapominania 𝐓𝐨𝐩𝐒𝐞𝐭 jest

pełny.

Prawda

Fałsz

-

Kontrawariantny funktor potęgowy jest pełny.

Prawda

Fałsz

+

Każda rama jest algebrą Heytinga.

Prawda

Fałsz

+

Operacja przypisująca danej przestrzeni topologicznej jej

zbiory otwarte może być rozszerzona do funktora kontrawariantnego.

Prawda

Fałsz

-

Kontrawariantny funktor potęgowy jest zawsze wierny.

Prawda

Fałsz

+

Transformacja naturalna dwóch funktorów, której komponentami są

izomorfizmy jest izomorfizmem w pewnej kategorii funktorów.

Prawda

Fałsz

+

Istnieją dwa funktory, których złożenie jest

transformacją identycznościową w 𝐒𝐞𝐭, ale które nie są izomorficzne.

Prawda

Fałsz

-

Operacja, która przestrzeni wektorowej V przypisuje

jej przestrzeń podwójnie dualną V** jest naturalnym izomorfizmem.

Prawda

Fałsz

+

Operacja, która przestrzeni wektorowej V przypisuje

jej przestrzeń podwójnie dualną V** jest naturalnym izomorfizmem, o ile V jest skończenie wymiarowa.

Prawda

Fałsz

+

Kowariantny homfunktor zachowuje produkty dowolnej mocy.

Prawda

Fałsz

-

Dla dowolonych zbiorów X,Y istnieje następująca

bijekcja:
𝒫(X×Y)𝒫(X)×𝒫(Y).

Prawda

Fałsz

-

Operacja F:𝐂×𝐃𝐄 jest bifunktorem wtedy i tylko wtedy, gdy dla

dowolnych obiektów C𝐂0, D𝐃0 operacje F(C,):𝐃𝐄 oraz F(,D):𝐂𝐄 są funktorami.

Prawda

Fałsz

-

Inkluzja 𝐆𝐫𝐩𝐂𝐚𝐭 zachowuje

eksponenty.

Pyt.6

Prawda

Fałsz

-

Każde dwie równoważne kategorie są izomorficzne.

Prawda

Fałsz

+

Każde dwie izomorficzne kategorie są równoważne.

Prawda

Fałsz

-

Każde dwie dualne kategorie są izomorficzne.

Prawda

Fałsz

-

Funktor jest równoważnością wtedy i tylko wtedy, gdy jest

pełny i wierny.

Prawda

Fałsz

+

Jeśli preporządek jest równoważny porządkowi, to jest

porządkiem.

Prawda

Fałsz

+

Istnieją dwa preporządki równoważne, które nie są

izomorficzne.

Prawda

Fałsz

+

Kategoria zbiorów i funkcji jest dualna do kategorii

zupełnych algebr Boole'a i homomorfizmów.

Prawda

Fałsz

-

Kategoria zbiorów skończonych i funkcji jest dualna do kategorii

algebr Boole'a.

Prawda

Fałsz

-

Każda atomowa algebra Boole'a jest izomorficzna ze zbiorem

podzbiorów pewnego zbioru.

Prawda

Fałsz

-

Każda zupełna algebra Boole'a jest izomorficzna ze

zbiorem podzbiorów pewnego zbioru.

Prawda

Fałsz

+

Jeśli algebra Boole'a jest izomorficzna ze zbiorem

podzbiorów pewnego zbioru, to jest zupełna.

Prawda

Fałsz

-

Każda zupełna algebra Boole'a jest atomowa.

Prawda

Fałsz

+

Każda skończona algebra Boole'a jest zupełna.

Prawda

Fałsz

-

Każda atomowa algebra Boole'a jest skończona.

Prawda

Fałsz

+

Każda skończona algebra Boole'a jest atomowa.

Prawda

Fałsz

+

Każda rama jest kratą dystrybutywną.

Prawda

Fałsz

+

Jeśli L jest kratą dystrybutywną, to Lop też.

Prawda

Fałsz

+

W dowolnej kracie L dopełnienie filtra pierwszego jest

ideałem.

Prawda

Fałsz

+

Każdy ultrafiltr w algebrze Boole'a jest pierwszy.

Prawda

Fałsz

-

Każdy filtr pierwszy w kracie dystrybutywnej jest

ultrafiltrem.

Prawda

Fałsz

+

Filtr otoczeń otwartych dowolnego punktu w przestrzeni

topologicznej jest filtrem właściwym.

Prawda

Fałsz

+

Filtr otoczeń otwartych dowolnego punktu w przestrzeni

topologicznej jest filtrem zupełnie pierwszym.

Prawda

Fałsz

+

Filtr otoczeń otwartych dowolnego punktu w przestrzeni

topologicznej jest filtrem pierwszym.

Prawda

Fałsz

-

W dowolnej kracie L, jeśli F jest filtrem, zaś I

ideałem, oraz FI=, wtedy istnieje filtr pierwszy F taki, że FF i FI=.

Prawda

Fałsz

+

W kratach dystrybutywnych ultrafiltry są pierwsze.

Prawda

Fałsz

-

W kratach dystrybutywnych filtry pierwsze są maksymalne.

Prawda

Fałsz

+

Każda przestrzeń realna jest T0.

Prawda

Fałsz

-

Każda przestrzeń T0 jest realna.

Prawda

Fałsz

-

Każda przestrzeń T1 jest realna.

Prawda

Fałsz

-

Przestrzenie realne są przestrzeniami Hausdorffa.

Prawda

Fałsz

+

Dziedziny ciągłe w topologii Scotta są realne.

Prawda

Fałsz

+

W porządku specjalizacji przestrzeni realnej istnieją

suprema wszystkich zbiorów skierowanych.

Prawda

Fałsz

-

Funktor Ω:𝐓𝐨𝐩𝐅𝐫𝐦op

jest prawym sprzężeniem do funktora pt:𝐅𝐫𝐦op𝐓𝐨𝐩.

Prawda

Fałsz

+

Dla dowolnej topologii X przestrzeń

pt(Ω(X)) jest przestrzenią T0.

Prawda

Fałsz

+

Dla dowolnej topologii realnej X przestrzeń

pt(Ω(X)) jest homeomorficzna z X.

Prawda

Fałsz

-

Dla dowolnej topologii X przestrzeń

pt(Ω(X)) jest przestrzenią Hausdorffa.

Prawda

Fałsz

+

Jeśli krata L jest przestrzenną ramą, to topologia

pt(L) jest realna.

Pyt.7

Prawda

Fałsz

+

Dla dowolnej kategorii 𝐂 kategoria

[𝐂op,𝐒𝐞𝐭] jest kartezjańsko zamknięta, zupełna i kozupełna.

Prawda

Fałsz

+

Funktor Yonedy zachowuje izomorfizmy.

Prawda

Fałsz

+

Funktor Yonedy odzwierciedla retrakcje.

Prawda

Fałsz

+

Funktor Yonedy jest reprezentowalny.

Prawda

Fałsz

-

Każde dwa funktory reprezentowalne są izomorficzne.

Prawda

Fałsz

+

Kontrawariantny funktor potęgowy jest reprezentowalny.

Prawda

Fałsz

-

Para (,+),0) jest reprezentacją funktora

zapominania U:𝐌𝐨𝐧𝐒𝐞𝐭.

Prawda

Fałsz

+

Każde dwie reprezentacje funktora F:𝐂op (gdzie 𝐂 jest dowolną lokalnie małą

kategorią) są izomorficzne.

Prawda

Fałsz

-

Każdy funktor typu 𝐂op𝐒𝐞𝐭 dla

lokalnie małej kategorii 𝐂 jest reprezentowalny.

Prawda

Fałsz

+

Jeśli 𝒴(A)(X)𝒴(A)(Y), to

XY dla dowolnych obiektów X,Y lokalnie małej kategorii 𝐂.

Prawda

Fałsz

+

Jeśli 𝒴(X)(A)𝒴(Y)(A), to

XY dla dowolnych obiektów X,Y lokalnie małej kategorii 𝐂.

Pyt.8

Prawda

Fałsz

+

Obiekt końcowy jest stożkiem nad pustym diagramem.

Prawda

Fałsz

+

Obiekt końcowy jest granicą pustego diagramu.

Prawda

Fałsz

-

Obiekt początkowy jest granicą pustego diagramu.

Prawda

Fałsz

+

Dowolny diagram w kategorii zupełniej 𝐂

posiada granicę.

Prawda

Fałsz

+

Istnieje kategoria kozupełna 𝐂, w której nie ma

obiektu końcowego.

Prawda

Fałsz

+

Produkt jest granicą diagramu nad kategorią dyskretną

(tzn. produkt w 𝐂 jest granicą funktora 𝐉𝐂, gdzie 𝐉 jest kategorią dyskretną.

Prawda

Fałsz

+

Istnieje kategoria, w której koprodukt w 𝐒𝐞𝐭 jest

produktem.

Prawda

Fałsz

-

Ekwalizator jest granicą diagramu, którego dziedziną jest

kategoria, w której są dokładnie 2 strzałki.

Prawda

Fałsz

+

Ekwalizator jest granicą diagramu, którego dziedziną jest

kategoria, w której są dokładnie 4 strzałki.

Prawda

Fałsz

+

Ekwalizator jest granicą diagramu, którego dziedziną jest

kategoria, w której są dokładnie 2 strzałki równoległe.

Prawda

Fałsz

-

Jeśli w danej kategorii istnieją wszystkie pulbaki i co

najmniej jeden obiekt końcowy, to w tej kategorii istnieją wszystkie granice.

Prawda

Fałsz

+

Jeśli w danej kategorii istnieją wszystkie pulbaki i co

najmniej jeden obiekt końcowy, to w tej kategorii istnieją wszystkie granice skończone.

Prawda

Fałsz

+

Jeśli w posecie (P,) istnieją wszystkie granice, to

poset dualny (P,) jest kratą zupełną.

Prawda

Fałsz

-

Jeśli w posecie (P,) istnieją wszystkie granice, to

poset dualny (P,) jest algebrą Heytinga.

Prawda

Fałsz

+

Każda mała kozupełna kategoria jest preporządkiem.

Prawda

Fałsz

+

Każda mała zupełna kategoria jest preporządkiem.

Prawda

Fałsz

-

Każda lokalnie mała kozupełna kategoria jest preporządkiem.

Prawda

Fałsz

-

Każda lokalnie mała zupełna kategoria jest preporządkiem.

Prawda

Fałsz

-

Kategoria zbiorów skończonych i funkcji jest zupełna.

Prawda

Fałsz

+

Kategoria 𝐃𝐜𝐩𝐨 jest zupełna.

Prawda

Fałsz

+

Jeśli kategoria 𝐂 posiada pulbaki i obiekt

końcowy, to posiada też produkty.

Prawda

Fałsz

-

Jeśli kategoria 𝐂 posiada pulbaki i obiekt

końcowy, to posiada też koprodukty.

Prawda

Fałsz

+

Funktor Yonedy jest ciągły.

Prawda

Fałsz

-

Funktor Yonedy zachowuje dowolne kogranice.

Pyt.9

Prawda

Fałsz

+

Funktor podnoszenia do potęgi [X,]:𝐂𝐂, X𝐂0 w kartezjańsko

zamkniętej kategorii 𝐂 jest prawym sprzężeniem.

Prawda

Fałsz

+

Istnieją funktory posiadające zarówno lewe, jak i prawe

sprzężenia.

Prawda

Fałsz

-

Funktor, który posiada lewe sprzężenie nie może posiadać

prawego sprzężenia.

Prawda

Fałsz

-

Funktory zapominania zawsze posiadają lewe sprzężenie.

Prawda

Fałsz

-

Funktory wolne są prawym sprzężeniem do funktorów

zapominania.

Prawda

Fałsz

+

Funktor List:𝐒𝐞𝐭𝐌𝐨𝐧

jest funktorem wolnym.

Prawda

Fałsz

-

Nie istnieje lewe sprzężenie funktora zapominania

𝐓𝐨𝐩𝐒𝐞𝐭.

Prawda

Fałsz

-

Operacja przeciwobrazu funkcji jest lewym sprzężeniem operacji

obrazu funkcji.

Prawda

Fałsz

+

Koprodukt jest lewym sprzężeniem lewego sprzężenia

produktu.

Prawda

Fałsz

-

Każdy funktor będący lewym sprzężeniem jest wierny.

Prawda

Fałsz

-

Operacja brania wnętrza zbioru w przestrzeni

topologicznej X jest lewym sprzężeniem inkluzji zbiorów otwartych w podzbiory X.

Pyt.10

Prawda

Fałsz

+

Jeśli funktor jest równoważnością kategorii, to posiada

lewe i prawe sprzężenie.

Prawda

Fałsz

+

Jeśli każdy komponent kojedności sprzężenia jest

retrakcją, to prawe sprzężenie jest funktorem wiernym.

Prawda

Fałsz

-

Jeśli każdy komponent kojedności sprzężenia jest

epimorfizmem, to prawe sprzężenie jest funktorem pełnym.

Prawda

Fałsz

+

Jeśli prawe sprzężenie jest funktorem pełnym i wiernym, to

kojedność sprzężenia jest izomorfizmem.

Prawda

Fałsz

-

Jeśli prawe sprzężenie jest funktorem pełnym i wiernym, to

jedność sprzężenia jest izomorfizmem.

Prawda

Fałsz

+

Prawe sprzężenia zachowują granice, zaś lewe - kogranice.

Prawda

Fałsz

-

Lewe sprzężenia zachowują granice, zaś prawe - kogranice.

Prawda

Fałsz

+

Istnieją prawe sprzężenia, które zachowują kogranice oraz

lewe sprzężenia, które zachowują granice.

Prawda

Fałsz

-

Jeśli funktor zachowuje granice, to ma lewe sprzężenie.

Prawda

Fałsz

+

Jeśli funktor między posetami zachowuje granice, to ma

lewe sprzężenie.

Prawda

Fałsz

+

Każda funkcja monotoniczna między kratami zupełnymi, posiadająca lewe

sprzężenie, zachowuje dowolne infima.

Prawda

Fałsz

+

Prawe sprzężenie między posetami jest surjekcją wtedy i

tylko wtedy, gdy jego lewe sprzężenie jest injekcją.

Prawda

Fałsz

-

Prawe sprzężenie między posetami jest injekcją wtedy i

tylko wtedy, gdy jego lewe sprzężenie jest surjekcją.

Prawda

Fałsz

+

Każde dwa prawe sprzężenia danego funktora są

izomorficzne.

Prawda

Fałsz

+

Każdy homomorfizm krat zupełnych posiada lewe i prawe

sprzężenie.

Prawda

Fałsz

-

Każdy homomorfizm ram posiada lewe i prawe sprzężenie.

Prawda

Fałsz

-

Każdy homomorfizm algebr Boole'a posiada lewe i prawe

sprzężenie.

Prawda

Fałsz

+

Każdy homomorfizm zupełnych algebr Boole'a posiada prawe

i lewe sprzężenie.

Prawda

Fałsz

-

W parze e-p między posetami, projekcja jest lewym

sprzężeniem zanurzenia.

Prawda

Fałsz

+

W parze e-p między posetami, zanurzenie zachowuje dowolne

suprema.

Prawda

Fałsz

+

W parze e-p między posetami, zanurzenie i projekcja

wzajemnie się wyznaczają.

Pyt.11

Prawda

Fałsz

+

Każde sprzężenie FG indukuje monadę

(GF,η,GηF).

Prawda

Fałsz

+

Każde sprzężenie FG indukuje komonadę

(FG,ε,FηG).

Prawda

Fałsz

-

Dowolna monada jest monadą indukowaną przez dokładnie

jedno sprzężenie.

Prawda

Fałsz

+

Dowolna monada jest monadą indukowaną przez sprzężenie.

Prawda

Fałsz

+

Każda monada na preporządku jest operacją idempotentną.

Prawda

Fałsz

-

Funktor zapominania 𝐌𝐨𝐧𝐒𝐞𝐭 jest

częścią sprzężenia, którego algebry monady indukowanej tworzą kategorię równoważną z 𝐒𝐞𝐭.

Prawda

Fałsz

+

Funktor zapominania 𝐌𝐨𝐧𝐒𝐞𝐭 jest

częścią sprzężenia, którego algebry monady indukowanej tworzą kategorię równoważną z 𝐌𝐨𝐧.

Prawda

Fałsz

+

Zwarte przestrzenie Hausdorffa i funkcje ciągłę tworzą kategorię algebraiczną.

Prawda

Fałsz

-

Zupełne algebry Boole'a i homomorfizmy tych algebr tworzą

kategorię algebraiczną.

Prawda

Fałsz

+

Kategoria grup jest równoważna kategorii algebr dla

pewnej monady.

Prawda

Fałsz

+

Suma mnogościowa  jest mnożeniem pewnej monady.

Prawda

Fałsz

+

Operacja dodawania nowego elementu najmniejszego do

częściowego porządku indukuje monadę nad 𝐏𝐨𝐬.

Pyt.12

Prawda

Fałsz

-

Każda dziedzina ciągła posiada bazę przeliczalną.

Prawda

Fałsz

-

Każdy element bazy dziedziny ciągłej jest zwarty.

Prawda

Fałsz

+

Każda baza posetu algebraicznego zawiera wszystkie

elementy zwarte.

Prawda

Fałsz

+

Każdy poset skończony jest algebraiczny.

Prawda

Fałsz

+

Każdy poset skończony jest dcpo.

Prawda

Fałsz

+

Każda krata skończona jest dcpo.

Prawda

Fałsz

-

Relacja aproksymacji na dowolnym posecie jest

interpolatywna.

Prawda

Fałsz

+

Relacja aproksymacji na dowolnej dziedzinie Scotta jest

interpolatywna.

Prawda

Fałsz

-

Liczby naturalne są dcpo.

Prawda

Fałsz

+

Liczby naturalne są posetem algebraicznym i bc-zupełnym.

Prawda

Fałsz

+

Każda rama jest dcpo.

Prawda

Fałsz

-

Każda krata dystrybutywna jest dcpo.

Prawda

Fałsz

+

Istnieje poset nieskończony, którego każdy element, który

nie jest maksymalny, jest zwarty.

Prawda

Fałsz

-

Zbiory domknięte w sensie Scotta na dowolnym posecie są domknięte ze względu

na dowolne suprema.

Prawda

Fałsz

+

Zbiory domknięte w sensie Scotta na dowolnym posecie skończonym są domknięte ze względu

na dowolne suprema.

Prawda

Fałsz

+

Stożki górne w posecie P (tj. zbiory typu x dla xP) są zwarte w topologii Scotta.

Prawda

Fałsz

+

Każdy stożek dolny x w dziedzinie ciągłej P wraz z

porządkiem z P obciętym do x jest dziedziną ciągłą.

Prawda

Fałsz

+

Topologia Scotta na dowolnym porządku jest T0.

Prawda

Fałsz

+

Istnieją częściowe porządki dowolnej mocy, dla których

topologia Scotta jest T1.

Prawda

Fałsz

+

Topologia Scotta na porządku jest T1 wtedy i tylko

wtedy, gdy częściowy porządek redukuje się do równości.

Prawda

Fałsz

+

Topologia Scotta na posecie posiadającym element

najmniejszy jest zwarta.

Prawda

Fałsz

+

Topologia Scotta na dowolnej dziedzinie ciągłej jest

realna.

Prawda

Fałsz

-

Topologia Scotta na dowolnym dcpo jest realna.

Prawda

Fałsz

+

Funkcja ciągła w sensie Scotta jest monotoniczna.

Prawda

Fałsz

-

Każda funkcja ciągła w sensie Scotta na dowolnym posecie posiada punkt stały.

Prawda

Fałsz

-

Każda funkcja ciągła w sensie Scotta na posecie

posiadającym element najmniejszy posiada punkt stały.

Prawda

Fałsz

+

Każda funkcja ciągła w sensie Scotta na dcpo

posiadającym element najmniejszy posiada najmniejszy punkt stały.

Prawda

Fałsz

+

Każda funkcja monotoniczna na dcpo

posiadającym element najmniejszy posiada punkt stały.

Prawda

Fałsz

+

Porządek specjalizacji topologii Scotta na dziedzinie

ciągłej pokrywa się z porządkiem tejże dziedziny.

Prawda

Fałsz

+

Funkcje ciągłe w sensie Scotta zachowują suprema zbiorów

skierowanych.

Pyt.13

Prawda

Fałsz

-

LISP jest językiem imperatywnym.

Prawda

Fałsz

+

FORTRAN jest językiem imperatywnym.

Prawda

Fałsz

+

𝐃𝐜𝐩𝐨 jest kategorią zupełną i kartezjańsko

zamkniętą.

Prawda

Fałsz

-

Kategoria dziedzin ciągłych i funkcji ciągłych w sensie

Scotta jest zupełna.

Prawda

Fałsz

-

Kategoria dziedzin ciągłych i funkcji ciągłych w sensie

Scotta jest kartezjańsko zamknięta.

Prawda

Fałsz

-

Kategoria dziedzin algebraicznych i funkcji ciągłych w sensie

Scotta jest kartezjańsko zamknięta.

Prawda

Fałsz

-

Jeśli D jest dziedziną ciągłą i E jest dziedziną

bc-zupełną, to [D,E] jest dziedziną bc-zupełną.

Prawda

Fałsz

+

Jeśli D jest dziedziną ciągłą i E jest dziedziną

bc-zupełną, to [D,E] jest dcpo.

Prawda

Fałsz

+

Operator fix:[P,P]P przypisujący

funkcji ciągłej w sensie Scotta na dcpo posiadającym element najmniejszy jej punkt stały jest ciągły w sensie Scotta.

Prawda

Fałsz

+

Operator fix:[P,P]P przypisujący

funkcji ciągłej w sensie Scotta na dowolnej kracie zupełnej jej punkt stały jest ciągły w sensie Scotta.

Prawda

Fałsz

+

Pętle while w semantyce denotacyjnej

modelujemy używając operatora punktu stałego.

Pyt.14

Prawda

Fałsz

+

𝐃𝐜𝐩𝐨EP jest ω-kategorią.

Prawda

Fałsz

+

𝐃𝐜𝐩𝐨 jest ω-kategorią.

Prawda

Fałsz

+

𝐒𝐞𝐭 jest ω-kategorią.

Prawda

Fałsz

-

Funktor między kategoriami dziedzin jest ciągły, jeśli

jest funkcją ciągłą w sensie Scotta.

Prawda

Fałsz

-

W 𝐒𝐞𝐭 równanie D[D,D] dla D𝐒𝐞𝐭0 nie ma żadnego

rozwiązania.

Prawda

Fałsz

+

W Dcpo istnieje nieskończenie wiele rozwiązań

równania D[D,D].

Prawda

Fałsz

-

Istnienie kategorii, w której rekursywne równania typu D[D,D]

mają rozwiązania, jest wykorzystywane w semantyce operacyjnej nietypowanego rachunku lambda.

Prawda

Fałsz

+

Istnienie kategorii, w której rekursywne równania typu D[D,D]

mają rozwiązania, jest wykorzystywane w semantyce denotacyjnej nietypowanego rachunku lambda.

Prawda

Fałsz

+

Przekątna Δ:𝐃𝐜𝐩𝐨𝐃𝐜𝐩𝐨×𝐃𝐜𝐩𝐨 jest funktorem

ciągłym i lokalnie ciągłym.

Prawda

Fałsz

+

𝐃𝐜𝐩𝐨 jest kategorią zupełną i kozupełną.

Prawda

Fałsz

-

Każdy endomorfizm w 𝐃𝐜𝐩𝐨 posiada najmniejszy

punkt stały.

Prawda

Fałsz

-

Dowolny endofunktor na ω-kategorii posiada punkt

stały.

Prawda

Fałsz

+

Każdy ciągłe endofunktor na ω-kategorii posiada

punkt stały.

Prawda

Fałsz

-

W 𝐒𝐞𝐭 istnieją nietrywialne rozwiązania

rówania XX+X.

Prawda

Fałsz

-

Liczby naturalne ω są rozwiązaniem równania

X𝟏X w kategorii 𝐃𝐜𝐩𝐨.

Prawda

Fałsz

-

Liczby naturalne ω są rozwiązaniem równania

XX w katetgorii 𝐃𝐜𝐩𝐨.

Prawda

Fałsz

-

Leniwe liczby naturalne są rozwiązaniem równania XXX w kategorii 𝐃𝐜𝐩𝐨.

Prawda

Fałsz

+

Podzbiory liczb naturanych 𝒫ω

uporządkowane względem inkluzji spełniają rówanie 𝒫ω[𝒫ω,𝒫ω] w kategorii 𝐃𝐜𝐩𝐨.

Prawda

Fałsz

+

Model zbioru Cantora Σ jest rozwiązaniem

pewnego rekursywnego równania w kategorii 𝐃𝐜𝐩𝐨.

Pyt.15

Prawda

Fałsz

-

Koalgebrą funktora T:𝐒𝐞𝐭𝐒𝐞𝐭

jest każda para (X,a:TXX).

Prawda

Fałsz

+

Algebry początkowe endofunktorów w 𝐒𝐞𝐭

jedyne z dokładnością do izomrfizmu.

Prawda

Fałsz

+

Istnieje kategoria, w której para

(,[0,s]:𝟏+) jest obiektem końcowym.

Prawda

Fałsz

+

Nieskończone listy nad alfabetem A są koalgebrą końcową

pewnego endofunktora na 𝐒𝐞𝐭.

Prawda

Fałsz

-

Nieskończone listy nad alfabetem A są koalgebrą

początkową pewnego endofunktora na 𝐒𝐞𝐭.

Prawda

Fałsz

-

Każda bisymulacja jest bipodobieństwem, ale nie

odwrotnie.

Prawda

Fałsz

-

Dwie nieskończone listy będące w relacji bisymulacji

muszą być sobie równe.

Prawda

Fałsz

+

Dwie bipodobne nieskończone listy są sobie równe.

Prawda

Fałsz

-

Istnieje bipodobieństwo, które nie jest bisymulacją.

Prawda

Fałsz

+

Koindukcja jest metodą dowodzenia własności list

nieskończonych.

Prawda

Fałsz

-

Metoda dowodzenia przez koindukcję opiera się na

własności uniwersalnej algebr początkowych endofunktorów w 𝐒𝐞𝐭.

Prawda

Fałsz

-

Relacja odwrotna do bisymulacji jest bipodobieństwem.

Prawda

Fałsz

-

T-koalgebry dla ustalonego funktora T:𝐒𝐞𝐭𝐒𝐞𝐭 wraz z homomorfizmami

tworzą kategorię małą.

Prawda

Fałsz

-

Graf homomorfizmu dwóch dowolnych koalgebr jest

bipodobieństwem.

Prawda

Fałsz

+

Graf homomorfizmu dwóch dowolnych koalgebr jest

bisymulacją.

Prawda

Fałsz

+

Istnieją endofunktory w 𝐒𝐞𝐭, dla których

kategoria algebr nie posiada obiektu początkowego.

Prawda

Fałsz

-

Dla każdego endofunktora T w 𝐒𝐞𝐭 kategoria

T-koalgebr posiada obiekt końcowy.

Prawda

Fałsz

+

Zasada indukcji matematycznej na liczabch naturalnych

jest równoważna faktowi, że liczby naturalne wraz z elementem zero i funkcją następnika tworzą algebrę początkową endofunktora 𝟏+() w 𝐒𝐞𝐭.

Prawda

Fałsz

+

Każda T-algebra początkowa jest izomorfizmem.

Prawda

Fałsz

+

Każda T-koalgebra końcowa jest izomorfizmem.

Prawda

Fałsz