PEE Moduł 13: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 1: | Linia 1: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika:PEE_M13_Slajd1.png|thumb|500px]] | |width="500px" valign="top"|[[Grafika:PEE_M13_Slajd1.png|thumb|500px]] | ||
|valign="top"|''' | |valign="top"|'''Modele elementów półprzewodnikowych''' | ||
|} | |} | ||
Linia 45: | Linia 45: | ||
|valign="top"|'''Modele diod''' | |valign="top"|'''Modele diod''' | ||
Dla diod sygnałowych i diod mocy, kiedy pełnią one funkcje jednokierunkowych zaworów, najważniejsze jest zamodelowanie statycznej charakterystyki prądowo-napięciowej. Przykładową charakterystykę rzeczywistej diody przedstawiono na slajdzie. Najczęściej w katalogach podaje się charakterystyki w skali półlogarytmicznej. Ponieważ temperatura ma zasadniczy wpływ na ich przebieg, temperatura złącza jest tutaj parametrem. | Dla diod sygnałowych i diod mocy, kiedy pełnią one funkcje jednokierunkowych zaworów, najważniejsze jest zamodelowanie statycznej charakterystyki prądowo-napięciowej. Przykładową charakterystykę rzeczywistej diody przedstawiono na slajdzie. Zaznaczono na niej podstawowe stany pracy diody: stan przewodzenia i stan zaporowy oraz charakterystyczne napięcia: napięcie progu zadziałania i napięcie przebicia. Najczęściej w katalogach podaje się charakterystyki w skali półlogarytmicznej. Ponieważ temperatura ma zasadniczy wpływ na ich przebieg, to temperatura złącza jest tutaj parametrem. Na przykład na slajdzie przedstawiono charakterystyki dla dwóch temperatur <math>100^\circ C</math> i <math>25^\circ C</math>. | ||
|} | |} | ||
Linia 52: | Linia 53: | ||
{| border="0" cellpadding="4" width="100%" | {| border="0" cellpadding="4" width="100%" | ||
|width="500px" valign="top"|[[Grafika:PEE_M13_Slajd5.png|thumb|500px]] | |width="500px" valign="top"|[[Grafika:PEE_M13_Slajd5.png|thumb|500px]] | ||
|valign="top"|Do prostych obliczeń charakterystykę diody aproksymuje się trzema odcinkami prostych przyjmując, dla poszczególnych obszarów pracy: przewodzenia, zaporowego i przebicia, charakterystyczne wartości rezystancji. Odcinek charakterystyki w zakresie przebicia (rezystancja <math>r_{BR}\,</math>) nie jest brany pod uwagę, ponieważ podczas normalnej pracy urządzeń, w których zastosowano daną diodę, przebicie napięciowe jest stanem awaryjnym powodującym uszkodzenie urządzenia. Napięcie przebicia <math>U_{BR}\,</math> nie jest podawane w katalogach przez producentów elementów półprzewodnikowych. | |valign="top"|Do prostych obliczeń charakterystykę diody aproksymuje się trzema odcinkami prostych przyjmując, dla poszczególnych obszarów pracy: przewodzenia, zaporowego i przebicia, charakterystyczne wartości rezystancji. Odcinek charakterystyki w zakresie przebicia (rezystancja <math>r_{BR}\,</math>) najczęściej nie jest brany pod uwagę, ponieważ podczas normalnej pracy urządzeń, w których zastosowano daną diodę, przebicie napięciowe jest stanem awaryjnym powodującym uszkodzenie urządzenia. Napięcie przebicia <math>U_{BR}\,</math> nie jest także podawane w katalogach przez producentów elementów półprzewodnikowych. | ||
|} | |} | ||
Wersja z 11:07, 16 sty 2007
![]() |
Modele elementów półprzewodnikowych |
![]() |
Model dwuodcinkowy uwzględniający warunek, że rezystancja w stanie zaporowym . |
![]() |
Kolejne uproszczenie charakterystyki uwzględniające stałą wartość napięcia przewodzenia diody. |
![]() |
Model idealnej diody. W tym wypadku dioda jest łącznikiem, który w stanie zaporowym jest wyłączony, a w stanie przewodzenia jest załączony. |
![]() |
Można zatem zapisać równania, określające związki prądów , od napięć złączowych , w postaci
Równania te nazywamy równaniami Ebersa-Molla. |
![]() |
Bezpośrednią interpretacją obwodową równań ze slajdu 18 jest model przedstawiony na slajdzie 19. |