PS Moduł 6: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Daniel-PW (dyskusja | edycje)
Nie podano opisu zmian
Daniel-PW (dyskusja | edycje)
Nie podano opisu zmian
Linia 2: Linia 2:
|width="500px" valign="top"|[[Grafika:PS_M6_Slajd1.png]]
|width="500px" valign="top"|[[Grafika:PS_M6_Slajd1.png]]
|valign="top"|
|valign="top"|
*W zastosowaniach teorii sygnałów często porównujemy analizowanego sygnału z innym sygnałem, w szczególności ¬z swoją własną przesuniętą w czasie kopią. Podobieństwo sygnałów można charakteryzować za pomocą  funkcji korelacyjnych.
*Przypomnijmy, że na podstawie iloczynu skalarnego możemy wyznaczyć zarówno odległość dwóch sygnałów, jak i kąt między nimi w danej przestrzeni Hilberta.
*Jeśli <math>x(t)\in L^2\,</math> , to także <math>x_{\tau}(t)\in L^2</math>.
*Dla różnych wartości przesunięcia <math>\tau\,</math> całka definicyjna (6.1) przybiera różne wartości. W ten sposób otrzymujemy zależność funkcyjną od zmiennej <math>\tau\,</math> . Dla ustalonego <math>\tau\,</math> wartość funkcji autokorelacji jest polem pod wykresem iloczynu sygnału nieprzesuniętego i przesuniętego.
*Definicja (6.1) została podana od razu dla sygnałów zespolonych. Przedrostek „auto” oznacza, że funkcja korelacyjna (6.1) opisuje korelację czasową między danym sygnałem a wersją przesuniętą tego samego sygnału. Podkreślamy to dodając do symbolu <math>"\varphi"\,</math> funkcji autokorelacji indeks sygnału <math>"x"\,</math>.


|}
|}

Wersja z 14:19, 5 wrz 2006

  • W zastosowaniach teorii sygnałów często porównujemy analizowanego sygnału z innym sygnałem, w szczególności ¬z swoją własną przesuniętą w czasie kopią. Podobieństwo sygnałów można charakteryzować za pomocą funkcji korelacyjnych.
  • Przypomnijmy, że na podstawie iloczynu skalarnego możemy wyznaczyć zarówno odległość dwóch sygnałów, jak i kąt między nimi w danej przestrzeni Hilberta.
  • Jeśli x(t)L2 , to także xτ(t)L2.
  • Dla różnych wartości przesunięcia τ całka definicyjna (6.1) przybiera różne wartości. W ten sposób otrzymujemy zależność funkcyjną od zmiennej τ . Dla ustalonego τ wartość funkcji autokorelacji jest polem pod wykresem iloczynu sygnału nieprzesuniętego i przesuniętego.
  • Definicja (6.1) została podana od razu dla sygnałów zespolonych. Przedrostek „auto” oznacza, że funkcja korelacyjna (6.1) opisuje korelację czasową między danym sygnałem a wersją przesuniętą tego samego sygnału. Podkreślamy to dodając do symbolu Parser nie mógł rozpoznać (błąd składni): {\displaystyle "\varphi"\,} funkcji autokorelacji indeks sygnału Parser nie mógł rozpoznać (błąd składni): {\displaystyle "x"\,} .