MN03LAB: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Przykry (dyskusja | edycje)
mNie podano opisu zmian
Przykry (dyskusja | edycje)
mNie podano opisu zmian
Linia 1: Linia 1:
==Własności arytmetyki zmiennopozycyjnej==
 
<!--
Konwertowane  z pliku LaTeX przez latex2mediawiki, zob. http://www.ii.uj.edu.pl/&nbsp;pawlik1/latex2mediawiki.php
-->
=Ćwiczenia. Własności arytmetyki zmiennopozycyjnej.=
 
<div style="margin-top:1em; padding-top,padding-bottom:1em;">
<span  style="display: block; background-color:#fefeee; border-bottom: 1px solid #E5E5E5; line-height: 1.1em; padding-bottom: 0.2em; font-variant:small-caps; color:#1A6ABF;">Ćwiczenie: Równe i równiejsze</span>
<div class="exercise">
 
Wyjaśnij, dlaczego w arytmetyce podwójnej precyzji IEEE 754 mamy
<div class="output" style="background-color:#e0e8e8; padding:1em"><pre>
octave:19> 2006/1e309
ans = 0
octave:20> 2.006/1e306
ans =  2.0060e-306
octave:21> (2006/1000)/(1e309/1000)
ans = 0
</pre></div>
Oczywiście, "teoretycznie" wszystkie trzy liczby powinny być sobie
równe (i niezerowe).
 
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">
<div style="font-size:smaller; background-color:#efe"> Kluczem jest stwierdzenie, jaka jest reprezentacja liczby <math>\displaystyle 10^{309}</math> w podwójnej precyzji? A
<math>\displaystyle 10^{306}</math>? </div>
</div></div>
 
</div></div>


<div style="margin-top:1em; padding-top,padding-bottom:1em;">
<div style="margin-top:1em; padding-top,padding-bottom:1em;">
Linia 5: Linia 35:
<div class="exercise">
<div class="exercise">


Podaj przykłady ''zbieżnych'' szeregów postaci <math>\displaystyle \sum_{n=1}^{\infty} a_n</math>, którego <math>\displaystyle N</math>-te sumy częściowe
Podaj przykłady <strong>zbieżnych</strong> szeregów postaci <math>\displaystyle \sum_{n=1}^{\infty} a_n</math>, którego <math>\displaystyle N</math>-te sumy częściowe
obliczone w arytmetyce pojedynczej precyzji algorytmem
obliczone w arytmetyce pojedynczej precyzji algorytmem
<div class="code" style="background-color:#e8e8e8; padding:1em"><pre>
<div class="code" style="background-color:#e8e8e8; padding:1em"><pre>
   
   
suma <nowiki>=</nowiki> 0.0;
suma = 0.0;
for n <nowiki>=</nowiki> 1..N
for n = 1..N
suma +<nowiki>=</nowiki> <math>\displaystyle a_n</math>;
suma += <math>\displaystyle a_n</math>;
</pre></div>
</pre></div>
   
   
Linia 17: Linia 47:
* ograniczone niezależnie od <math>\displaystyle N</math>, albo
* ograniczone niezależnie od <math>\displaystyle N</math>, albo
* numerycznie rozbieżne, to znaczy takie, że dla bardzo dużych <math>\displaystyle N</math> zachodzi
* numerycznie rozbieżne, to znaczy takie, że dla bardzo dużych <math>\displaystyle N</math> zachodzi
<code>suma <nowiki>=</nowiki><nowiki>=</nowiki> Inf</code>.
<code>suma == Inf</code>.
   
   
Wykonaj to samo zadanie, ale podając przykłady szeregów  ''rozbieżnych'' (w
Wykonaj to samo zadanie, ale podając przykłady szeregów  <strong>rozbieżnych</strong> (w
arytmetyce dokładnej).
arytmetyce dokładnej).
</div></div>
</div></div>
Linia 25: Linia 55:
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"><div style="margin-left:1em">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"><div style="margin-left:1em">   


Rozpatrz na przykład takie szeregi zbieżne:
Rozpatrz na przykład takie szeregi:
* Szereg zerowy (numerycznie dostajesz oczywiście też 0)
* Szereg zerowy (numerycznie dostajesz oczywiście też 0)
* <math>\displaystyle 1 + 10^{2006} - 10^{2006} + 0 + \ldots = 1</math> oraz <math>\displaystyle 1 + 10^{2006} - 1 + 0 + \ldots = 10^{2006}</math>
* <math>\displaystyle 1 + 10^{2006} - 10^{2006} + 0 + \ldots = 1</math> oraz <math>\displaystyle 1 + 10^{2006} - 1 + 0 + \ldots = 10^{2006}</math>
Linia 90: Linia 120:
double dskladnik;
double dskladnik;
dstarasuma <nowiki>=</nowiki> 0.0; dsuma <nowiki>=</nowiki> 1.0; dlicznik <nowiki>=</nowiki> 1;
dstarasuma = 0.0; dsuma = 1.0; dlicznik = 1;
while(dstarasuma !<nowiki>=</nowiki> dsuma)  
while(dstarasuma != dsuma)  
{
{
dskladnik <nowiki>=</nowiki> 1.0/dlicznik;
dskladnik = 1.0/dlicznik;
dstarasuma <nowiki>=</nowiki> dsuma;
dstarasuma = dsuma;
dsuma +<nowiki>=</nowiki> dskladnik;
dsuma += dskladnik;
dlicznik++;
dlicznik++;
}
}
printf("Suma <nowiki>=</nowiki> dsuma, dlicznik-1, dskladnik);
printf("Suma = dsuma, dlicznik-1, dskladnik);
 
 
</pre></div>
</pre></div>
Linia 109: Linia 139:


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"><div style="margin-left:1em">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"><div style="margin-left:1em">   
Nasza suma przekroczy wartość 20, więc aby <code>20 + dskladnik <nowiki>=</nowiki><nowiki>=</nowiki> 20</code>, musi
Nasza suma przekroczy wartość 20, więc aby <code>20 + dskladnik == 20</code>, musi
być dskładnik <math>\displaystyle \approx 10^{-15}</math> (lub więcej). Tymczasem zakres liczb typu integer wynosi
być dskładnik <math>\displaystyle \approx 10^{-15}</math> (lub więcej). Tymczasem zakres liczb typu integer wynosi
niewiele ponad <math>\displaystyle 10^9</math>, więc po jakimś czasie dlicznik przyjmie wartości ujemne.
niewiele ponad <math>\displaystyle 10^9</math>, więc po jakimś czasie dlicznik przyjmie wartości ujemne.

Wersja z 16:46, 2 wrz 2006


Ćwiczenia. Własności arytmetyki zmiennopozycyjnej.

Ćwiczenie: Równe i równiejsze

Wyjaśnij, dlaczego w arytmetyce podwójnej precyzji IEEE 754 mamy
 
octave:19> 2006/1e309
ans = 0
octave:20> 2.006/1e306
ans =  2.0060e-306
octave:21> (2006/1000)/(1e309/1000)
ans = 0

Oczywiście, "teoretycznie" wszystkie trzy liczby powinny być sobie równe (i niezerowe).

Wskazówka

Ćwiczenie: Szeregi zbieżne(?)

Podaj przykłady zbieżnych szeregów postaci n=1an, którego N-te sumy częściowe obliczone w arytmetyce pojedynczej precyzji algorytmem

 
suma = 0.0;
for n = 1..N
	suma += <math>\displaystyle a_n</math>;

będą

  • ograniczone niezależnie od N, albo
  • numerycznie rozbieżne, to znaczy takie, że dla bardzo dużych N zachodzi

suma == Inf.

Wykonaj to samo zadanie, ale podając przykłady szeregów rozbieżnych (w arytmetyce dokładnej).

Rozwiązanie

Ćwiczenie

Dla kolejnych N, wyznacz N-tą sumę częściową szeregu Taylora dla funkcji wykładniczej, gdy x=90:

exn=0Nxnn!,

korzystając z algorytmu podanego w poprzednim zadaniu. Porównaj błąd: względny i bezwzględny w porównaniu do wartości wyznaczonej z wykorzystaniem funkcji bibliotecznej exp(). Powtórz następnie dla x=10.

Czy --- zgodnie z teorią matematyczną --- sumy te dążą do wartości ex. Objaśnij dokładnie, co się stało.

Rozwiązanie

Ćwiczenie

Już wcześniej stwierdziliśmy, że wyznaczanie e(1+1/n)n dla dużego n nie jest dobrym pomysłem. Przeprowadź eksperyment numeryczny potwierdzający to stwierdzenie i objaśnij jego wyniki.

Ćwiczenie

Jak wiadomo, szereg harmoniczny n=11/n jest rozbieżny. Spróbuj przewidzieć, jaki będzie efekt numerycznego wyznaczenia tej sumy w arytmetyce podwójnej precyzji przy użyciu poniższego kodu.

 
	int dlicznik;
	double dsuma, dstarasuma;
	double dskladnik;
	
	dstarasuma = 0.0; dsuma = 1.0; dlicznik = 1;
	while(dstarasuma != dsuma) 
	{
		dskladnik = 1.0/dlicznik;
		dstarasuma = dsuma;
		dsuma += dskladnik;
		dlicznik++;
	}
	printf("Suma = dsuma, dlicznik-1, dskladnik);
	 
Wskazówka
Rozwiązanie

Ćwiczenie

Jak szybko i na jakiej wysokości musiałby lecieć samolot npla, aby pocisk wystrzeliwany z działka z prędkością 7500 km/h nie trafił w cel, gdy potrzebne pierwiastki liczone są wzorem szkolnym?

Ćwiczenie: Zadanie o wyznaczaniu pierwiastka kwadratowego metodą Newtona

Dla zadanej liczby a>1, należy wyznaczyć przybliżenie a stosując metodę Herona. Zaproponuj dobre przybliżenie początkowe x0 wiedząc, że a jest liczbą maszynową typu double. Ile iteracji wystarczy, by osiągnąć ϵ-zadowalające przybliżenie?

Rozwiązanie

Ćwiczenie: Zadanie o wyznaczaniu odwrotności bez dzielenia metodą Newtona

Należy wyznaczyć przybliżenie 1a stosując metodę Newtona do równania 1xa=0. Zaproponuj dobre przybliżenie początkowe x0 wiedząc, że a jest liczbą maszynową typu double. Ile iteracji wystarczy, by osiągnąć ϵ-zadowalające przybliżenie?

Rozwiązanie

Ćwiczenie

Niech 0<a1<a2<<an. Czy z punktu widzenia błędów w flν lepiej jest policzyć sumę tych liczb w kolejności od najmniejszej do największej czy odwrotnie?

Rozwiązanie

Ćwiczenie

Aby obliczyć S(a,b)=a2b2 można zastosować dwa algorytmy: 𝐀𝐋𝐆1(a,b)=a*ab*b oraz 𝐀𝐋𝐆2(a,b)=(a+b)*(ab). Pokazać, że oba algorytmy są numerycznie poprawne, ale drugi z nich wywołuje mniejszy błąd względny wyniku w przypadku, gdy rdν(a)=a i rdν(b)=b.

Ćwiczenie

Pokazać, że naturalny algorytm obliczania cosinusa kąta między dwoma wektorami Parser nie mógł rozpoznać (nieznana funkcja „\inR”): {\displaystyle \displaystyle a, b\inR^n} ,

cos(a,b)=j=1najbj(j=1naj2)(j=1nbj2),

jest numerycznie poprawny. Oszacować błąd względny wyniku w flν.

Ćwiczenie

Pokazać, że naturalny algorytm obliczania Ax2 dla danej macierzy Parser nie mógł rozpoznać (nieznana funkcja „\inR”): {\displaystyle \displaystyle A\inR^{n\times n}} i wektora Parser nie mógł rozpoznać (nieznana funkcja „\inR”): {\displaystyle \displaystyle x\inR^n} jest numerycznie poprawny. Dokładniej,

flν(Ax2)=(A+E)x,

gdzie E22(n+2)nνA2. Ponadto, jeśli A jest nieosobliwa to

|flν(Ax2)Ax2|2(n+2)nν(A2A12)Ax2.

Ćwiczenie

Niech 𝐀𝐋𝐆 będzie algorytmem numerycznie poprawnym w zbiorze danych fF0, przy czym dla małych ν, flν(𝐀𝐋𝐆(f))=φ(yν), gdzie yνyKνy i K nie zależy od ν i f (y=N(f)). Pokazać, że w ogólności 𝐀𝐋𝐆 nie musi być "numerycznie poprawny po współrzędnych", tzn. w ogólności nie istnieje bezwzględna stała K1 taka, że dla małych ν i dla dowolnej fF0

|yν,jyj|K1ν|yj|,1jn,

gdzie y=(y1,,yn).

Ćwiczenie

Podaj przykład funkcji f, której miejsce zerowe x* ma wspólczynnik uwarunkowania

  • mały
  • duży
Rozwiązanie