MN03LAB: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Przykry (dyskusja | edycje)
Przykry (dyskusja | edycje)
mNie podano opisu zmian
Linia 1: Linia 1:
==Ćwiczenia. Własności arytmetyki zmiennopozycyjnej.==
==Ćwiczenia. Własności arytmetyki zmiennopozycyjnej.==


Linia 23: Linia 24:
</div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"><div style="margin-left:1em">
<div style="background-color:#fefeee; margin-left:1em">
 
Rozpatrz na przykład takie szeregi zbieżne:
Rozpatrz na przykład takie szeregi zbieżne:
* Szereg zerowy (numerycznie dostajesz oczywiście też 0)
* Szereg zerowy (numerycznie dostajesz oczywiście też 0)
Linia 33: Linia 34:
rosnąć).
rosnąć).
* Szereg jedynkowy.
* Szereg jedynkowy.
</div>
</div></div>
</div></div></div>


<div style="margin-top:1em; padding-top,padding-bottom:1em;">
<div style="margin-top:1em; padding-top,padding-bottom:1em;">
Linia 52: Linia 53:
</div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"><div style="margin-left:1em">   
Zastosowanie naszego algorytmu dla <math>\displaystyle x=-90</math> daje w wyniku (dla arytmetyki
Zastosowanie naszego algorytmu dla <math>\displaystyle x=-90</math> daje w wyniku (dla arytmetyki
podwójnej precyzji) sumę równą około <math>\displaystyle 10^{30}</math>,  
podwójnej precyzji) sumę równą około <math>\displaystyle 10^{30}</math>,  
Linia 64: Linia 65:
wyniku.
wyniku.


</div></div>
</div></div></div>


<div style="margin-top:1em; padding-top,padding-bottom:1em;">
<div style="margin-top:1em; padding-top,padding-bottom:1em;">
Linia 105: Linia 106:
</div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"><div style="margin-left:1em">   
Nasza suma przekroczy wartość 20, więc aby <code>20 + dskladnik <nowiki>=</nowiki><nowiki>=</nowiki> 20</code>, musi
Nasza suma przekroczy wartość 20, więc aby <code>20 + dskladnik <nowiki>=</nowiki><nowiki>=</nowiki> 20</code>, musi
być dskładnik <math>\displaystyle \approx 10^{-15}</math> (lub więcej). Tymczasem zakres liczb typu integer wynosi
być dskładnik <math>\displaystyle \approx 10^{-15}</math> (lub więcej). Tymczasem zakres liczb typu integer wynosi
Linia 117: Linia 118:
potrzebowalibyśmy razem około <math>\displaystyle 10^7</math> sekund, czyli ponad trzy miesiące...
potrzebowalibyśmy razem około <math>\displaystyle 10^7</math> sekund, czyli ponad trzy miesiące...


</div></div>
</div></div></div>


<div style="margin-top:1em; padding-top,padding-bottom:1em;">
<div style="margin-top:1em; padding-top,padding-bottom:1em;">
Linia 136: Linia 137:
</div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"><div style="margin-left:1em">   


Jak pamiętamy, <math>\displaystyle a = (1+f)2^p = \widetilde{f} 2^{p+1}</math>,
Jak pamiętamy, <math>\displaystyle a = (1+f)2^p = \widetilde{f} 2^{p+1}</math>,
Linia 153: Linia 154:
Jak można jeszcze bardziej poprawić <math>\displaystyle x_0</math>?
Jak można jeszcze bardziej poprawić <math>\displaystyle x_0</math>?


</div></div>
</div></div></div>


<div style="margin-top:1em; padding-top,padding-bottom:1em;">
<div style="margin-top:1em; padding-top,padding-bottom:1em;">
Linia 165: Linia 166:
</div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"><div style="margin-left:1em">   
Jak pamiętamy, <math>\displaystyle a = (1+f)2^p</math>, skąd <math>\displaystyle \frac{1}{a} = \frac{1}{1+f}2^{-p}</math>.
Jak pamiętamy, <math>\displaystyle a = (1+f)2^p</math>, skąd <math>\displaystyle \frac{1}{a} = \frac{1}{1+f}2^{-p}</math>.
Wystarczy więc przybliżyć <math>\displaystyle \frac{1}{1+f}</math>. Ponieważ dla <math>\displaystyle 0 \leq f < 1</math>,
Wystarczy więc przybliżyć <math>\displaystyle \frac{1}{1+f}</math>. Ponieważ dla <math>\displaystyle 0 \leq f < 1</math>,
Linia 202: Linia 203:
[http://arith.stanford.edu/techrep.html  raportów technicznych Stanford Computer Architecture and Arithmetic Group
[http://arith.stanford.edu/techrep.html  raportów technicznych Stanford Computer Architecture and Arithmetic Group
]
]
</div></div>
</div></div></div>


<div style="margin-top:1em; padding-top,padding-bottom:1em;">
<div style="margin-top:1em; padding-top,padding-bottom:1em;">
Linia 212: Linia 213:
</div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"><div style="margin-left:1em">   
Od najmniejszej do największej.
Od najmniejszej do największej.
</div></div>
</div></div></div>


<div style="margin-top:1em; padding-top,padding-bottom:1em;">
<div style="margin-top:1em; padding-top,padding-bottom:1em;">
Linia 288: Linia 289:
</div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none"><div style="margin-left:1em">   
Ponieważ nasze zadanie to wyznaczenie <math>\displaystyle x^* = f^{-1}(0)</math>, to  
Ponieważ nasze zadanie to wyznaczenie <math>\displaystyle x^* = f^{-1}(0)</math>, to  
<center><math>\displaystyle  
<center><math>\displaystyle  
Linia 301: Linia 302:
co zgadza się z intuicją, bo może być, że nawet minimalne zaburzenie <math>\displaystyle f</math>
co zgadza się z intuicją, bo może być, że nawet minimalne zaburzenie <math>\displaystyle f</math>
spowoduje, iż miejsc zerowych po prostu nie będzie...
spowoduje, iż miejsc zerowych po prostu nie będzie...
</div></div>
</div></div></div>

Wersja z 12:55, 29 sie 2006

Ćwiczenia. Własności arytmetyki zmiennopozycyjnej.

Ćwiczenie: Szeregi zbieżne(?)

Podaj przykłady zbieżnych szeregów postaci n=1an, którego N-te sumy częściowe obliczone w arytmetyce pojedynczej precyzji algorytmem

 
suma = 0.0;
for n = 1..N
	suma += <math>\displaystyle a_n</math>;

będą

  • ograniczone niezależnie od N, albo
  • numerycznie rozbieżne, to znaczy takie, że dla bardzo dużych N zachodzi

suma == Inf.

Wykonaj to samo zadanie, ale podając przykłady szeregów rozbieżnych (w arytmetyce dokładnej).

Rozwiązanie

Ćwiczenie

Dla kolejnych N, wyznacz N-tą sumę częściową szeregu Taylora dla funkcji wykładniczej, gdy x=90:

exn=0Nxnn!,

korzystając z algorytmu podanego w poprzednim zadaniu. Porównaj błąd: względny i bezwzględny w porównaniu do wartości wyznaczonej z wykorzystaniem funkcji bibliotecznej exp(). Powtórz następnie dla x=10.

Czy --- zgodnie z teorią matematyczną --- sumy te dążą do wartości ex. Objaśnij dokładnie, co się stało.

Rozwiązanie

Ćwiczenie

Już wcześniej stwierdziliśmy, że wyznaczanie e(1+1/n)n dla dużego n nie jest dobrym pomysłem. Przeprowadź eksperyment numeryczny potwierdzający to stwierdzenie i objaśnij jego wyniki.

Ćwiczenie

Jak wiadomo, szereg harmoniczny n=11/n jest rozbieżny. Spróbuj przewidzieć, jaki będzie efekt numerycznego wyznaczenia tej sumy w arytmetyce podwójnej precyzji przy użyciu poniższego kodu.

 
	int dlicznik;
	double dsuma, dstarasuma;
	double dskladnik;
	
	dstarasuma = 0.0; dsuma = 1.0; dlicznik = 1;
	while(dstarasuma != dsuma) 
	{
		dskladnik = 1.0/dlicznik;
		dstarasuma = dsuma;
		dsuma += dskladnik;
		dlicznik++;
	}
	printf("Suma = dsuma, dlicznik-1, dskladnik);
	 
Wskazówka
Rozwiązanie

Ćwiczenie

Jak szybko i na jakiej wysokości musiałby lecieć samolot npla, aby pocisk wystrzeliwany z działka z prędkością 7500 km/h nie trafił w cel, gdy potrzebne pierwiastki liczone są wzorem szkolnym?

Ćwiczenie: Zadanie o wyznaczaniu pierwiastka kwadratowego metodą Newtona

Dla zadanej liczby a>1, należy wyznaczyć przybliżenie a stosując metodę Herona. Zaproponuj dobre przybliżenie początkowe x0 wiedząc, że a jest liczbą maszynową typu double. Ile iteracji wystarczy, by osiągnąć ϵ-zadowalające przybliżenie?

Rozwiązanie

Ćwiczenie: Zadanie o wyznaczaniu odwrotności bez dzielenia metodą Newtona

Należy wyznaczyć przybliżenie 1a stosując metodę Newtona do równania 1xa=0. Zaproponuj dobre przybliżenie początkowe x0 wiedząc, że a jest liczbą maszynową typu double. Ile iteracji wystarczy, by osiągnąć ϵ-zadowalające przybliżenie?

Rozwiązanie

Ćwiczenie

Niech 0<a1<a2<<an. Czy z punktu widzenia błędów w flν lepiej jest policzyć sumę tych liczb w kolejności od najmniejszej do największej czy odwrotnie?

Rozwiązanie

Ćwiczenie

Aby obliczyć S(a,b)=a2b2 można zastosować dwa algorytmy: 𝐀𝐋𝐆1(a,b)=a*ab*b oraz 𝐀𝐋𝐆2(a,b)=(a+b)*(ab). Pokazać, że oba algorytmy są numerycznie poprawne, ale drugi z nich wywołuje mniejszy błąd względny wyniku w przypadku, gdy rdν(a)=a i rdν(b)=b.

Ćwiczenie

Pokazać, że naturalny algorytm obliczania cosinusa kąta między dwoma wektorami Parser nie mógł rozpoznać (nieznana funkcja „\inR”): {\displaystyle \displaystyle a, b\inR^n} ,

cos(a,b)=j=1najbj(j=1naj2)(j=1nbj2),

jest numerycznie poprawny. Oszacować błąd względny wyniku w flν.

Ćwiczenie

Pokazać, że naturalny algorytm obliczania Ax2 dla danej macierzy Parser nie mógł rozpoznać (nieznana funkcja „\inR”): {\displaystyle \displaystyle A\inR^{n\times n}} i wektora Parser nie mógł rozpoznać (nieznana funkcja „\inR”): {\displaystyle \displaystyle x\inR^n} jest numerycznie poprawny. Dokładniej,

flν(Ax2)=(A+E)x,

gdzie E22(n+2)nνA2. Ponadto, jeśli A jest nieosobliwa to

|flν(Ax2)Ax2|2(n+2)nν(A2A12)Ax2.

Ćwiczenie

Niech 𝐀𝐋𝐆 będzie algorytmem numerycznie poprawnym w zbiorze danych fF0, przy czym dla małych ν, flν(𝐀𝐋𝐆(f))=φ(yν), gdzie yνyKνy i K nie zależy od ν i f (y=N(f)). Pokazać, że w ogólności 𝐀𝐋𝐆 nie musi być "numerycznie poprawny po współrzędnych", tzn. w ogólności nie istnieje bezwzględna stała K1 taka, że dla małych ν i dla dowolnej fF0

|yν,jyj|K1ν|yj|,1jn,

gdzie y=(y1,,yn).

Ćwiczenie

Podaj przykład funkcji f, której miejsce zerowe x* ma wspólczynnik uwarunkowania

  • mały
  • duży
Rozwiązanie