Analiza matematyczna 1/Ćwiczenia 2: Funkcje elementarne: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Linia 1: Linia 1:
==Funkcje elementarne==
==Funkcje elementarne==


{{cwiczenie|2.1.||
<span id="cwiczenie_2_1">{{cwiczenie|2.1.||


Dana jest funkcja afiniczna <math> \displaystyle f(x)=-x+2</math>. Wyznaczyć<br>
Dana jest funkcja afiniczna <math> \displaystyle f(x)=-x+2</math>. Wyznaczyć<br>
Linia 11: Linia 11:
d) Czy istnieje malejąca funkcja
d) Czy istnieje malejąca funkcja
afiniczna <math> \displaystyle g</math> taka, że <math> \displaystyle (g\circ g )(x)=4x+3</math>?
afiniczna <math> \displaystyle g</math> taka, że <math> \displaystyle (g\circ g )(x)=4x+3</math>?
}}
}}</span>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">
Linia 71: Linia 71:


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">
a), b) c) Zastosować wskazówki do zadania [[##z.am1.02.010|Uzupelnic z.am1.02.010|]].<br>
a), b) c) Zastosować wskazówki do [[#cwiczenie_2_1|ćwiczenia 2.1.]]<br>
d) Niech <math> \displaystyle  g(x)=\frac{ax +b}{cx +d}</math>.
d) Niech <math> \displaystyle  g(x)=\frac{ax +b}{cx +d}</math>.
Zauważyć, że można przyjąć, że <math> \displaystyle c=1</math> (dlaczego?). Jakie równania
Zauważyć, że można przyjąć, że <math> \displaystyle c=1</math> (dlaczego?). Jakie równania

Wersja z 15:32, 21 sie 2006

Funkcje elementarne

Ćwiczenie 2.1.

Dana jest funkcja afiniczna f(x)=x+2. Wyznaczyć
a) odwrotność tej funkcji,
b) funkcję odwrotną do f,
c) złożenie f2=ff, f3=fff, f4=ffff, f9=fffffffff.
d) Czy istnieje malejąca funkcja afiniczna g taka, że (gg)(x)=4x+3?

Wskazówka
Rozwiązanie

Ćwiczenie 2.2.

Dana jest homografia f(x)=x+1x1. Wyznaczyć
a) odwrotność tej homografii,
b) homografię odwrotną,
c) złożenie f2=ff, f3=fff, f4=ffff oraz f11=fffffffffff.
d) Czy istnieje homografia g: taka, że gg=f?

Wskazówka
Rozwiązanie

Ćwiczenie 2.3.

Wyrazić w prostszej postaci:
a) arcsin(cosx), arccos(sinx),
b) sin(arccosx), cos(arcsinx),
c) arctg(ctgx), arcctg(tgx),
d) tg(arcctgx), ctg(arctgx),
e) sinh(arcoshx), cosh(arsinhx).

Wskazówka
Rozwiązanie

Ćwiczenie 2.4.

Wykazać, że dla dowolnych liczb x, y zachodzą równości:
a) cosh(x+y)=coshxcoshy+sinhxsinhy,
b) sinh(x+y)=sinhxcoshy+coshxsinhy.

Wskazówka
Rozwiązanie

Ćwiczenie 2.5.

a) Niech Tn(x):=cos(narccosx) dla n=0,1,2,.... Wykaż, że T0(x)=1, T1(x)=x oraz

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle T_{n+2}(x) \ =\ 2x T_{n+1}(x)-T_n (x), }

dla n0.
b) Wykazać, że funkcja Tn(x)=cos(narccosx) jest wielomianem zmiennej x, dla n=0,1,2,3,....

Wskazówka
Rozwiązanie

Ćwiczenie 2.6.

a) Niech Un(x):=cosh(narcoshx) dla n=0,1,2,.... Wykaż, że U0(x)=1, U1(x)=x oraz

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle U_{n+2}(x) \ =\ 2xU_{n+1}(x)-U_{n}(x),\quad } dla n0.

b) Wykazać, że funkcja Un(x)=cosh(narcoshx) jest wielomianem zmiennej x, dla n=0,1,2,3,....
c) Wykazać, że dla dowolnej liczby n=0,1,2,3,... istnieje wielomian Wn taki, że Un oraz Tn są restrykcjami -- odpowiednio do przedziałów [1,) oraz [1,1] -- wielomianu Wn.

Wskazówka
Rozwiązanie