Analiza matematyczna 1/Ćwiczenia 6: Szeregi liczbowe: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Patola (dyskusja | edycje)
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Linia 263: Linia 263:
</div></div>
</div></div>


{{cwiczenie|6.4.||
<span id="cwiczenie_6_4">{{cwiczenie|6.4.||


Zbadać zbieżność następujących szeregów liczbowych:<br>
Zbadać zbieżność następujących szeregów liczbowych:<br>
Linia 273: Linia 273:
<math>\displaystyle
<math>\displaystyle
\displaystyle \sum_{n=1}^{\infty} \frac{1}{(\ln (\ln n))^{\ln n}}</math>
\displaystyle \sum_{n=1}^{\infty} \frac{1}{(\ln (\ln n))^{\ln n}}</math>
}}
}}</span>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">   

Wersja z 11:31, 9 sie 2006

6. Szeregi liczbowe

Ćwiczenie 6.1.

Zbadać zbieżność następujących szeregów liczbowych:
(1) n=15+(1)nn

(2) n=1cos1nsin1n2.

Wskazówka
Rozwiązanie

Ćwiczenie 6.2.

Zbadać zbieżność następujących szeregów liczbowych:
(1) n=11nn

(2) n=1cos1n

Wskazówka
Rozwiązanie

Ćwiczenie 6.3.

Obliczyć sumę następujących szeregów liczbowych:
(1) n=11n(n+1)

(2) n=13n+2n6n

(3) n=11(2n1)(2n+1).

Wskazówka
Rozwiązanie

Ćwiczenie 6.4.

Zbadać zbieżność następujących szeregów liczbowych:
(1) n=11lnn

(2) n=11(ln(lnn))lnn

Wskazówka
Rozwiązanie

Ćwiczenie 6.5.

Zbadać zbieżność następujących szeregów liczbowych:
(1) n=11n1+1n

(2) n=11n(1+1n)n

Wskazówka
Rozwiązanie

Ćwiczenie 6.6.

Niech n=1an będzie szeregiem o wyrazach dodatnich.
(1) Udowodnić, że jeśli szereg n=1an jest zbieżny, to także szereg n=1an2 jest zbieżny.
(2) Pokazać, że nie zachodzi implikacja odwrotna w powyższym stwierdzeniu.

Wskazówka
Rozwiązanie