Analiza matematyczna 1/Ćwiczenia 6: Szeregi liczbowe: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Linia 22: Linia 22:


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   
'''(1)'''
'''(Ad (1))'''
Zauważmy, że
Zauważmy, że


Linia 46: Linia 46:
jest rozbieżny.<br>
jest rozbieżny.<br>
<br>
<br>
'''(2)'''
'''(Ad (2))'''
Rozważmy następujący szereg
Rozważmy następujący szereg
<math>\displaystyle \displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2},</math>
<math>\displaystyle \displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2},</math>

Wersja z 18:17, 7 sie 2006

6. Szeregi liczbowe

Ćwiczenie 6.1.

Zbadać zbieżność następujących szeregów liczbowych:
(1) n=15+(1)nn
(2) n=1cos1nsin1n2.

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Zbadać zbieżność następujących szeregów liczbowych:
(1) n=11nn
(2) n=1cos1n

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Obliczyć sumę następujących szeregów liczbowych:
(1) n=11n(n+1)
(2) n=13n+2n6n
(3) n=11(2n1)(2n+1).

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Zbadać zbieżność następujących szeregów liczbowych:
(1) n=11lnn
(2) n=11(ln(lnn))lnn

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Zbadać zbieżność następujących szeregów liczbowych:
(1) n=11n1+1n
(2) n=11n(1+1n)n

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Niech n=1an będzie szeregiem o wyrazach dodatnich.
(1) Udowodnić, że jeśli szereg n=1an jest zbieżny, to także szereg n=1an2 jest zbieżny.
(2) Pokazać, że nie zachodzi implikacja odwrotna w powyższym stwierdzeniu.

{black}

Wskazówka
Rozwiązanie