Analiza matematyczna 1/Ćwiczenia 5: Obliczanie granic: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Linia 141: Linia 141:
\endaligned</math></center>
\endaligned</math></center>


gdzie w ostatniej równości wykorzystaliśmy
gdzie w ostatniej równości wykorzystaliśmy [[Analiza matematyczna 1/Wykład 5: Obliczanie granic#twierdzenie_5_1|twierdzenie 5.1.]] (2) oraz fakt, że
Twierdzenie [[##t.new.am1.w.05.010|Uzupelnic t.new.am1.w.05.010|]](2) oraz fakt, że
<math>\displaystyle\lim\limits_{n\rightarrow +\infty} (x_n-1)=+\infty.</math>
<math>\displaystyle\lim\limits_{n\rightarrow +\infty} (x_n-1)=+\infty.</math>
Zauważmy także, że ułamek
Zauważmy także, że ułamek

Wersja z 12:35, 7 sie 2006

Obliczanie granic

Ćwiczenie 5.1.

Obliczyć następujące granice ciągów:
(1) limn+5n+7n+8nn
(2) limn+(1314)n+(1819)n+(2123)nn
(3) limn+4n+1+3n+12n+1+3n.

Wskazówka
Rozwiązanie

Ćwiczenie 5.2.

Obliczyć następujące granice ciągów:
(1) limn+(11xn)xn, gdzie {xn} jest ciągiem o wyrazach dodatnich takim, że limn+xn=+

(2) limn+(nn+1)n

(3) limn+(n3n+2)n

(4) limn+(n2+2n)n

(5) limn+(n2+2n2+1)2n2+2

(6) limn+(n+2n2+1)n.

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Obliczyć następujące granice ciągów:
(1) limn+nsin3n
(2) limn+ncos1nsin10n
(3) limn+arctg(n2+1n)
(4) limn+n5+n62n+3n.

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Obliczyć granice górne i dolne następujących ciągów:
(1) an=(11n)ncosnπ
(2) an=sinnπ2
(3) an=2(1)n+3(1)n+1.

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Ciąg {xn} zadany jest rekurencyjnie

Parser nie mógł rozpoznać (błąd składni): {\displaystyle x_1=1,\quad \forall n\ge 1:\ x_{n+1}=\frac{1}{2}\bigg(x_n+\frac{c}{x_n}\bigg), }

gdzie c>0. Zbadać zbieżność ciągu {xn}. Jeśli jest on zbieżny, obliczyć jego granicę.

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Niech {an} będzie ciągiem liczbowym o wyrazach dodatnich (to znaczy n: an>0). Udowodnić następujące stwierdzenia:
(1) jeśli limn+an+1an=a<1, to limn+an=0;
(2) jeśli limn+an+1an=a>1, to limn+an=+.
Korzystając z powyższych stwierdzeń wyznacz następujące granice:
(3) limn+ann!, gdzie a;
(4) limn+annk, gdzie a,k>0.

{black}

Wskazówka
Rozwiązanie