Analiza matematyczna 1/Ćwiczenia 9: Pochodna funkcji jednej zmiennej: Różnice pomiędzy wersjami
m Zastępowanie tekstu – „,↵</math>” na „</math>,” |
|||
Linia 53: | Linia 53: | ||
\end{align}</math> | \end{align}</math> | ||
b) Wykażemy, że <math>(\arccos x)'=-\frac {1}{\sqrt {1-x^2}}</math> dla <math>-1<x<1</math>. Niech <math>y=\arccos x</math>, wtedy <math>x=\cos y</math>. Funkcją odwrotną do <math>f_1(x)=\arccos x</math> jest <math>f_1^{-1}(y)=\cos y</math>. Korzystając z twierdzenia o pochodnej funkcji odwrotnej, otrzymujemy | b) Wykażemy, że <math>(\arccos x)'=-\frac {1}{\sqrt {1-x^2}}</math> dla <math>-1<x<1</math>. Niech <math>y=\arccos x</math>, wtedy <math> x = \cos y</math>. Funkcją odwrotną do <math>f_1(x)=\arccos x</math> jest <math>f_1^{-1}(y)=\cos y</math>. Korzystając z twierdzenia o pochodnej funkcji odwrotnej, otrzymujemy | ||
<center><math>(\arccos x)'=f_1'(x)=\frac {1}{(f_1^{-1})'(y)}=\frac {1}{-\sin | <center><math>(\arccos x)'=f_1'(x)=\frac {1}{(f_1^{-1})'(y)}=\frac {1}{-\sin |
Aktualna wersja na dzień 07:52, 24 lip 2024
9. Pochodna funkcji jednej zmiennej
Ćwiczenie 9.1.
Obliczyć pochodną funkcji (o ile istnieje)
a) , , , , ,
b) , , , , , ,
c) , , , ,
d)
Ćwiczenie 9.2.
Dla jakich wartości parametrów funkcja
Ćwiczenie 9.3.
Znaleźć
a) równanie prostej stycznej do wykresu funkcji w punkcie ,
b) równanie prostej stycznej do wykresu funkcji w punkcie ,
c) kąt pod jakim przecinają się funkcje i w punkcie .
Ćwiczenie 9.4.
Zbadać monotoniczność funkcji
a) ,
b) ,
c) ,
d) .Ćwiczenie 9.5.
a) Wykazać, że równanie ma dokładnie jedno rozwiązanie w zbiorze liczb rzeczywistych.
b) Wykazać, że równanie ma dokładnie jedno rozwiązanie w zbiorze liczb rzeczywistych.
c) Wykazać, że jeśli wielomian stopnia ma (licząc z krotnościami) pierwiastków rzeczywistych, to jego pochodna ma (licząc z krotnościami) pierwiastków rzeczywistych.
Ćwiczenie 9.6.
Wykazać, że funkcja dana wzorem
gdzie , jest ciągła w każdym punkcie, ale nie jest różniczkowalna w żadnym punkcie osi rzeczywistej.