Analiza matematyczna 1/Ćwiczenia 1: Zbiory liczbowe

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

Zbiory liczbowe

Ćwiczenie 1.1.

Sprawdzić, czy liczby: 37, 21, 52, 12, 13 należą do trójkowego zbioru Cantora.

Wskazówka
Rozwiązanie

Ćwiczenie 1.2.

Wykazać równości

a) q:q1 n:1+q+q2+...+qn=qn+11q1,

b) a, b:ab n:an+1bn+1ab=k=0nankbk.

Wskazówka
Rozwiązanie


Ćwiczenie 1.3.

a) Sprawdzić, że (nk)+(nk+1)=(n+1k+1), dla dowolnych liczb całkowitych nieujemnych n, k takich, że n>k.

b) Wykazać wzór dwumianowy Newtona

a,b n :(a+b)n=k=0n(nk)ankbk.
Wskazówka
Rozwiązanie

Ćwiczenie 1.4.

Za pomocą zasady indukcji matematycznej wykazać, że dla n=0,1,2,3,... zachodzą równości

a) 1+cosa+cos2a+...+cosna=sin(n+12)a+sina22sina2,

b) 0+sina+sin2a+...+sinna=cos(n+12)a+cosa22sina2.

Przypomnijmy, że równości te wyprowadziliśmy w ramach wykładu, korzystając ze wzoru de Moivre'a.

Wskazówka
Rozwiązanie

Ćwiczenie 1.5.

Uprościć wyrażenia

a) (21)5,

b) (1+i3)6,

c) 2+3+23.

Wskazówka
Rozwiązanie

Ćwiczenie 1.6.

Rozwiązać w zbiorze liczb zespolonych równania

a) z6+64=0,

b) 1+z+z2+z3+z4+z5=0,

c) 2z3=1+i.

Wskazówka
Rozwiązanie