Teoria informacji/TI Wykład 12
Wracamy do szacowania . Przypomnijmy, że wyprowadzone na poprzednim wykładzie szacowanie obowiązuje dla dowolnego kodu C, o ile n jest wystarczająco duże. Pokażemy teraz, że dla wystarczająco dużych n istnieje kod C, który spełnia warunki Twierdzenia Shannona. W szczególności taki, dla którego drugi składnik szacowania można ograniczyć z góry przez .
Do dowodu użyjemy metody probabilistycznej. Ustalmy . Niech będzie zbiorem wszystkich możliwych m-elementowych sekwencji , takich że są parami różne. Niech .
Od tego miejsca będziemy używać notacji na oznaczenie sekwencji z . Argument probabilistyczny Shannona opiera się na prostej obserwacji. Jeśli
to istnieje kod C, taki że .
Zauważmy, że jeśli jest sekwencją w o wartościach to
Nasze szacowanie daje zatem
Oszacujemy teraz (*) dla ustalonej pary indeksów .
Dla niech oznacza kulę w o promieniu i środku w punkcie e, tzn.
Łatwo zauważyć, że
Zatem
(gdzie oznacza funkcję charakterystyczną: jest spełniona).
Możemy oszacować teraz wartość (**) dla ustalonego e. Z pewnością każdy wektor inny niż pojawia się jako dla pewnej sekwencji , i łatwo zauważyć, że każdy taki wektor pojawia się taką samą liczbę razy, tzn.
dla dowolnych . A zatem każde dodaje do sumy , czyli
Na poprzednim wykładzie dokonaliśmy oszacowania rozmiaru kuli o promieniu , mamy zatem
Możemy już oszacować (**):
Pamiętając, że , otrzymujemy stąd również szacowanie dla (*):
Wracając do głównego szacowania, dostajemy
Jesteśmy tu już blisko celu, gdyż odpowiada „prawie” .
Konkretniej, do tej pory wiemy, że powyższe równanie jest spełnione dla wystarczająco dużych n, powiedzmy , i dla dowolnych , . Twierdzimy, że można dobrać m i w ten sposób, że dla dowolnego spełnione jest
W szczególności druga nierówność implikuje
A więc jeśli n jest wystarczająco duże, dostajemy
Używając argumentu probabilistycznego, wnioskujemy, że musi istnieć kod C rozmiaru m, spełniający . Ponieważ , ten kod spełnia warunki Shannona.
Wybór i spełniający oba konieczne warunki najłatwiej przedstawimy na diagramie
Używając ciągłości H, wybieramy takie, że . Jeśli n jest wystarczająco duże, potem możemy znaleźć k takie, że . Tym samym oba warunki są spełnione, co kończy dowód.