PEE Moduł 7

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Metoda równań różniczkowych w rozwiązaniu stanu nieustalonego w obwodach elektrycznych

Podstawowe pojęcia stanów nieustalonych

Analizując przebiegi czasowe procesów zachodzących w obwodach elektrycznych należy wyróżnić dwa stany:

  • stan ustalony charakteryzujący się tym, że postać odpowiedzi jest identyczna z postacią wymuszenia (na przykład w odpowiedzi na wymuszenie sinusoidalne odpowiedź ustalona jest również sinusoidalna o tej samej częstotliwości choć innej fazie początkowej i innej amplitudzie)
  • stan nieustalony, w którym przebiegi czasowe odpowiedzi mają inny charakter niż wymuszenie (na przykład w odpowiedzi na wymuszenie stałe odpowiedź obwodu jest wykładniczo malejąca czy oscylacyjna).

Stan nieustalony w obwodzie RLC powstaje jako nałożenie się stanu przejściowego (zwykle zanikającego) i stanu ustalonego przy zmianie stanu obwodu spowodowanego przełączeniem. Może on wystąpić w wyniku przełączeń w samym obwodzie pasywnym (zmiana wartości elementów, zwarcie elementu, wyłączenie elementu) lub w wyniku zmiany sygnałów wymuszających (parametrów źródeł napięciowych i prądowych, w tym także załączeniem lub wyłączeniem źródła). Dowolną zmianę w obwodzie nazywać będziemy komutacją. Zakładać będziemy, że czas trwania komutacji jest równy zeru, co znaczy że wszystkie przełączenia odbywają się bezzwłocznie.

W obwodach elektrycznych proces komutacji modeluje się zwykle przy pomocy wyłączników i przełączników wskazujących na rodzaj przełączenia. Chwilę czasową poprzedzającą bezpośrednio komutację oznaczać będziemy w ogólności przez (w szczególności przez ), natomiast chwilę bezpośrednio następującą po komutacji przez (w szczególności przez ), gdzie jest chwilą przełączenia (komutacji).


Prawa komutacji

Z podstawowych praw rządzących obwodami elektrycznymi wynika, że w rezultacie przełączenia zachowana zostaje ciągłość sumy ładunków kondensatorów dołączonych do węzła. Oznacza to, że suma ładunków kondensatorów dołączonych do takiego węzła przed przełączeniem jest równa sumie ładunków kondensatorów dołączonych do tych węzłów po przełączeniu. Zasada ta wynika stąd, że do danego węzła nie może dopłynąć skończony ładunek w zerowym czasie.

Podobnie ciągłość zachowuje suma strumieni skojarzonych cewek należących do danego oczka. Suma strumieni skojarzonych cewek należących do oczka przed przełączeniem jest równa sumie strumieni skojarzonych cewek należących do tego oczka po przełączeniu. Prawo komutacji dotyczące kondensatorów Suma ładunków kondensatorów dołączonych do danego węzła nie może zmienić się w sposób skokowy na skutek komutacji, co można zapisać w postaci (w równaniu przyjęto, że komutacja zachodzi w chwili t0=0)


Σiqi(0)=Σi1i(0+)


Jeśli w wyniku przełączenia nie powstają oczka złożone z samych kondensatorów oraz idealnych źródeł napięcia to biorąc pod uwagę zależność qC=CuC prawo komutacji dla kondensatorów można zapisać w uproszczonej postaci uzależnionej od napięć tych kondensatorów


uC(0)=uC(0+)


Ostatnia postać prawa komutacji dotycząca napięcia na kondensatorze jest najczęściej używana w praktyce.

Prawo komutacji dotyczące cewek

Suma strumieni skojarzonych cewek należących do danego oczka nie może ulec skokowej zmianie na skutek przełączenia w obwodzie, co można zapisać w postaci (w równaniu przyjęto, że komutacja zachodzi w chwili t0=0)


Σiψi(0)=Σiψi(0+)