Teoria informacji/TI Wykład 12

Z Studia Informatyczne
Wersja z dnia 09:55, 1 sie 2006 autorstwa Stromy (dyskusja | edycje)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Przejdź do nawigacjiPrzejdź do wyszukiwania

Wracamy do szacowania PrE(Δ,C). Przypomnijmy że (link TODO) obowiązuje dla dowolnego kodu C, o ile n jest wystarczająco duże. Pokażemy teraz że dla wystarczająco dużych n istnieje kod C który spełnia warunki Twierdzenia Shannona. W szczególności taki dla którego drugi składnik (link TODO) można ograniczyć z góry przez δ2.

Do dowodu użyjemy metody probabilistycznej. Ustalmy m<2n. Niech 𝒞 będzie zbiorem wszystkich możliwych m-elementowych sekwencji c1,,cm{0,1}n takich że ci są parami różne. Niech N=|𝒞|.

N=(2nm)m!

Od tego miejsca będziemy używać notacji C¯ na oznaczenie sekwencji z 𝒞. Argument probabilistyczny Shannona opiera się na prostej obserwacji. Jeśli

1NC¯PrE(Δ,C¯)δ

to istnieje kod C taki że PrE(Δ,C¯)δ.

Zauważmy że jeśli C¯ jest sekwencją w 𝒞 o wartościach Parser nie mógł rozpoznać (nieznana funkcja „\c”): {\displaystyle C=\{c_1, \ldots, \c_m \}} to

uCvC{u}p(d(v,uE)ρ)=i=1mjip(d(cj,ciE)ρ)

A z (link TODO) dostajemy

Parser nie mógł rozpoznać (nieznana funkcja „\pr”): {\displaystyle \frac{1}{N} \sum_{\bar{C}} \pr_E ( \Delta , \bar{C} ) \leq \frac{1}{N} \sum_{\bar{C}} \left( \frac{\delta }{2} + \frac{1}{m} \sum_{i = 1}^m \sum_{j \neq i} \, p ( d (c_j,c_i \oplus E) \leq \rho ) \right) }

=δ2+1mi=1mji1NC¯p(d(cj,ciE)ρ)(*)


Oszacujemy teraz (*) dla ustalonej pary indeksów ij.

Dla e{0,1}n niech Sρ(e) oznacza kulę w {0,1}n o promieniu ρ i środku w punkcie e, tzn.

Sρ(e)={v{0,1}n:d(v,e)ρ}

Łatwo zauważyć że

d(v,ue)ρvuSρ(e)

Zatem

1NC¯p(d(cj,ciE)ρ)=1NC¯p(cicjSρ(E))

=e{0,1}np(E=e)1NC¯χ(cicjSρ(e))(**)

(gdzie χ oznacza funkcję charakterystyczną χ(φ)=1φholds).

Możemy oszacować teraz wartość (**) dla ustalonego e. Z pewnością każdy wektor inny niż 0n pojawia się jako cicj dla pewnej sekwencji C¯𝒞, i łatwo zauważyć że każdy taki wektor pojawia się taką samą liczbę razy

|{C¯:u=cicj}|=|{C¯:v=cicj}|=N2n1

dla dowolnych u,v{0,1}n{0n}. A zatem każde uSρ(e){0n} dodaje N2n1 do sumy C¯χ(cicjSρ(e)), czyli

C¯χ(cicjSρ(e))=N2n1|Sρ(e){0n}|

Możemy to teraz zsumować po możliwych wartościach e:

e{0,1}np(E=e)1NC¯χ(cicjSρ(e))=e{0,1}np(E=e)12n1|Sρ(e){0n}|

=12n1|Sρ(e){0n}|

Znamy ponadto objętość Sρ(e), więc

|Sρ(e){0n}|2nH(ρ)=2nH(Q+η)

Wracając do równania (link TODO) daje to

Parser nie mógł rozpoznać (nieznana funkcja „\pr”): {\displaystyle \frac{1}{N} \sum_{\bar{C}} \, \pr_E ( \Delta , \bar{C} ) \leq \frac{\delta }{2} + \frac{1}{m} \sum_{i = 1}^m \sum_{j \neq i} \frac{1}{2^n - 1} \cdot 2^{n \cdot H(Q + \eta )}}

=δ2+1mm(m1)12n1m2n2nH(Q+η)
δ2+m2n2nH(Q+η)
=δ2+2n(log2mn+H(Q+η)1)

Jesteśmy tu już blisko celu, gdyż (log2mn+H(Q+η)1) odpowiada „prawie” R(C)CΓ.

Konkretniej, do tej pory wiemy że powyższe równanie jest spełnione dla wystarczająco dużych n, np. nn1, i dla 2m2n, Parser nie mógł rozpoznać (błąd składni): {\displaystyle 0 < \eta < \frac{1}{2} – Q} . Twierdzimy że można dobrać n0n1 m i </math>\eta</math> w ten sposób że dla dowolnego nn0 spełnione jest

Parser nie mógł rozpoznać (nieznana funkcja „\label”): {\displaystyle C_{\Gamma } - \varepsilon \leq \frac{\log_2 m}{n} \leq C_{\Gamma } \label{(i)} }
log2mn+H(Q+η)1ε3

W szczególności druga nierówność implikuje

2n(log2mn+H(Q+η)1)12nε3

A więc jeśli n jest wystarczająco duże, to dostajemy

Parser nie mógł rozpoznać (nieznana funkcja „\pr”): {\displaystyle \frac{1}{N} \sum_{\bar{C}} \, \pr_E ( \Delta , \bar{C} ) \leq \frac{\delta }{2} + \frac{\delta }{2} = \delta }

Używając argumentu probabilistycznego wnioskujemy że musi istnieć kod C rozmiaru m, spełniający PrE(Δ,C)δ. Ponieważ R(C)=log2mn, ten kod spełnia warunki Shannona.

Wybór spełniający warunki (link TODO) najłatwiej przedstawić na diagramie

(Rysunek TODO)

Używając ciągłości H, wybieramy η takie że CΓ13ε1H(Q+η)CΓ. Jeśli n jest wystarczająco duże, to potem możemy znaleźć k takie że CΓεknCΓ23ε. Tym samym oba warunki są spełnione, co kończy dowód.