MIMINF:Analiza matematyczna 2

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

Forma zajęć

Wykład (45 godzin) + ćwiczenia (45 godzin)

Opis

Podstawowe pojęcia i metody rachunku różniczkowego i całkowego funkcji jednej i wielu zmiennych.

Sylabus

Autorzy

  • Rafał Czyż — Uniwersytet Jagielloński
  • Leszek Gasiński — Uniwersytet Jagielloński
  • Marta Kosek — Uniwersytet Jagielloński
  • Jerzy Szczepański — Uniwersytet Jagielloński
  • Halszka Tutaj-Gasińska — Uniwersytet Jagielloński

Wymagania wstępne

  • Analiza matematyczna 1 oraz Algebra liniowa.

Zawartość

  • Przestrzenie metryczne:
    • ciągi w przestrzeniach metrycznych
    • zupełność
    • zwartość, spójność
  • Przestrzenie unormowane, przestrzenie unitarne
  • Ciągi i szeregi funkcyjne:
    • szeregi potęgowe, szeregi Taylora
    • trygonometryczne szeregi Fouriera
  • Rachunek różniczkowy w przestrzeniach Banacha i w RN:
    • ciągłość funkcji wielu zmiennych
    • pochodne cząstkowe i różniczka; interpretacja geometryczna; gradient
    • różniczka złożenia
    • twierdzenie o funkcjach uwikłanych
    • różniczki wyższych rzędów
    • wzór Taylora
    • ekstrema funkcji wielu zmiennych
    • ekstrema warunkowe (metoda mnożników Lagrange'a).
  • Wielokrotna całka Riemanna:
    • twierdzenie Fubiniego
    • wzór Greena
  • Równania różniczkowe zwyczajne:
    • twierdzenie o istnieniu i jednoznaczności rozwiązania problemu Cauchy’ego
    • przegląd metod całkowania równań różniczkowych zwyczajnych
    • podstawy rachunku wariacyjnego

Literatura

  1. W. Rudin, Podstawy analizy matematycznej, Państwowe Wydawnictwo Naukowe, Warszawa 1982.
  2. W. Rudnicki, Wykłady z analizy matematycznej, Wydawnictwo Naukowe PWN, Warszawa 2001.
  3. J. Ombach, Wykłady z równań różniczkowych wspomagane komputerowo – Maple wyd. II, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków 1999.
  4. G.M. Fichtenholz, Rachunek różniczkowy i całkowy, tom I, II i III, Państwowe Wydawnictwo Naukowe, Warszawa 1978.
  5. L. Drużkowski, Analiza matematyczna dla fizyków. I. Podstawy, Skrypt Uniwersytetu Jagiellońskiego, Kraków 1995.
  6. L. Drużkowski, Analiza matematyczna dla fizyków. II. Wybrane zagadnienia, Skrypt Uniwersytetu Jagiellońskiego, Kraków 1997.
  7. A. Birkholc, Analiza matematyczna. Funkcje wielu zmiennych, Wydawnictwo Naukowe PWN, Warszawa 2002.
  8. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, część I i II, Państwowe Wydawnictwo Naukowe, Warszawa 1986.
  9. J. Banaś, S. Wędrychowicz, Zbiór zadań z analizy matematycznej, Wydawnictwa Naukowo-Techniczne, Warszawa 2001.