Zaawansowane algorytmy i struktury danych/Wykład 5

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

Abstrakt

Pierwsza część tego wykładu poświęcona będzie problemowi obliczania najkrótszych ścieżek w grafie z jednego źródła w przypadku, w którym wagi krawędzi mogą być ujemne. Zaprezentujemy algorytm Bellmana-Forda, który rozwiązuje ten problem w czasie O(|V||E|). W drugiej części zajmiemy się problemem obliczania odległości między wszystkimi parami wierzchołków. Pokażemy związki tego problemu z mnożeniem macierzy.

Algorytm Bellmana-Forda


Algorytm Bellmana-Forda służy do rozwiązania problemu znalezienia najkrótszych ścieżek w grafie, w którym wagi krawędzi mogą być ujemne. W problemie tym mamy dany graf G=(V,E) i funkcję wagową w:E. Algorytm Bellmana-Forda wylicza dla zadanego wierzchołka s, czy istnieje w grafie G cykl o ujemnej wadze osiągalny z s. Jeżeli taki cykl nie istniej to algorytm oblicza najkrótsze ścieżki z s do wszystkich pozostałych wierzchołków wraz z ich wagami.

Relaksacja

Podobnie ja to było w Algorytmie Dijkstry użyjemy metody relaksacji. Metoda ta polega na tym, że w trakcie działania algorytmu dla każdego wierzchołka vV utrzymujemy wartość d(v) będącą górnym ograniczeniem wagi najkrótszej ścieżki ze s do v. W algorytmie utrzymywać będziemy także dla każdego wierzchołka v wskaźnik π(v) wskazujący na poprzedni wierzchołek przez, który prowadzi dotychczas znaleziona najkrótsza ścieżka.

Na początku wielkości te inicjujemy przy pomocy następującej procedury:


Algorytm Inicjalizacja algorytmu najkrótszych ścieżek


 INICJALIZUJ(G,s)
 for każdy wierzchołek vV do
   d(v)=
   π(v)=NIL
 d(s)=0


Ustalone przez tą procedure wartości d(v) są dobrymi ograniczeniami górnymi na odległości.

relaksacja|Relaksacja]] krawędzi (u,v) polega na sprawdzeniu, czy przechodząc krawędzią (u,v) z u do v, nie otrzymamy krótszej ścieżki z s do vniż ta dotychczas znaleziona. Jeżeli tak to aktualizowane są także wartości d(v) i π(v). W celu relaksacji krawędzi (u,v) używamy procedury