ED-4.2-m10-1.0-Slajd18

Z Studia Informatyczne
Wersja z dnia 10:57, 29 sie 2006 autorstwa ALesniewska (dyskusja | edycje)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Przejdź do nawigacjiPrzejdź do wyszukiwania

Zmienne kategoryczne

Zmienne kategoryczne


Definicja miary podobieństwa (lub niepodobieństwa), dla obiektów opisanych zmiennymi kategorycznymi, jest analogiczna do miary zdefiniowanej dla zmiennych binarnych, w tym sensie, że jest ona zdefiniowana jako stosunek liczby zmiennych dla których obiekty się różnią do sumarycznej liczby wszystkich zmiennych opisujących obiekty. Wynika to z faktu, że zmienna kategoryczna jest generalizacją zmiennej binarnej. Zmienna kategoryczna może przyjmować więcej niż dwie wartości (np. zmienna dochód: wysoki, średni, niski). Niepodobieństwo pomiędzy obiektami i i j, opisanymi zmiennymi kategorycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają różną wartość (p - m) do sumarycznej liczby wszystkich zmiennych p. Podobnie jak poprzednio, podobieństwo pomiędzy obiektami i i j, opisanymi zmiennymi kategorycznymi, definiujemy jako stosunek liczby zmiennych, dla których oba obiekty posiadają identyczną wartość (p - n) do sumarycznej liczby wszystkich zmiennych p. Miara podobieństwa pomiędzy obiektami i i j, opisanymi zmiennymi kategorycznymi, zdefiniowana powyżej jest również znana jako tzw. miara (współczynnik) Jaccarda i jest często stosowana w komercyjnych produktach eksploracji danych.


<< Poprzedni slajd | Spis treści | Następny slajd >>