MN04

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

Uwaga: przekonwertowane latex2mediawiki; prawdopodobnie trzeba wprowadzi? poprawki

Uwaga: przekonwertowane latex2mediawiki; prawdopodobnie trzeba wprowadzi? poprawki

Algorytm


<math>\displaystyle x_N^*\, =\, c_N / u_{N,N}</math>;
for (i = N-1; i >= 1; i--)
	<math>\displaystyle x_i^*\,:=\,\left( c_i\,-\, \sum_{j=i+1}^N
	u_{i,j}x_j^*\right)/u_{i,i}</math>;

(Algorytm ten jest wykonalny, ponieważ nieosobliwość macierzy implikuje, że ui,i0, i.) Podobnie, układ Lx=c rozwiązujemy algorytmem:

Algorytm Gaussa



<math>\displaystyle x_1 = c_1</math>;
for (i=2; i <= N; i++)
	<math>\displaystyle x_i = c_i\,-\,\sum_{j=1}^{i-1} l_{i,j} x_j^*</math>;

kod w c

#include <stdio.h>
float x;
	main()
	{
	}
	

wyniki

\beginoutux to są wyniki \endoutux

A jeśli masz komendę DGESV = 5 to co?

Algorytm


<math>\displaystyle x_N^*\, =\, c_N / u_{N,N}</math>;
for (i = N-1; i >= 1; i--)
	<math>\displaystyle x_i^*\,:=\,\left( c_i\,-\, \sum_{j=i+1}^N
	u_{i,j}x_j^*\right)/u_{i,i}</math>;

(Algorytm ten jest wykonalny, ponieważ nieosobliwość macierzy implikuje, że ui,i0, i.) Podobnie, układ Lx=c rozwiązujemy algorytmem:

Algorytm Gaussa



<math>\displaystyle x_1 = c_1</math>;
for (i=2; i <= N; i++)
	<math>\displaystyle x_i = c_i\,-\,\sum_{j=1}^{i-1} l_{i,j} x_j^*</math>;

kod w c

#include <stdio.h>
float x;
	main()
	{
	}
	

wyniki

\beginoutux to są wyniki \endoutux

A jeśli masz komendę DGESV = 5 to co?