Ćwiczenia do Modułu 1
Ta strona będzie zawierać podstawowe zadania na tablice.
Zadanie 1 (Flaga polska)
Tablica A typu array[1..N] of integer (N > 0) wypełniona zerami i jedynkami reprezentuje ciąg N urn w których znajdują się żetony białe (0) i czerwone (1). Należy podać algorytm działania automatu przestawiającego żetony w urnach tak, by najpierw były żetony białe, potem czerwone. Robot może wykonywać dwa rodzaje operacji:
- Kol(i) - podaje kolor żetonu w i-tej urnie (1 ≤ i ≤ n)
- Z(i,j) - zamienia żetony z i-tej i j-tej urny (1 ≤ i,j ≤ n)
Uwagi:
- Operacja Kol jest bardzo kosztowna, więc zależy nam na tym by kolor każdego żetonu był sprawdzany co najwyżej raz.
- Robot potrafi zapamiętać tylko kilka wartości z przedziału 0..N+1.
- Nie można założyć, że występuje choć jeden żeton w każdym z kolorów.
Możliwe rozwiązania zadania 1
Rozwiązanie 1
Rozwiązanie 1 optymalizuje liczbę sprawdzeń kolorów, ale może niepotrzebnie zamieniać czerwone z czerwonymi. Mozna tego uniknąć wprowadzając dodatkową pętlę po czerwonych od końca tablicy.
Rozwiązanie 2
W rozwiązaniu 2 są dwie zagnieżdżone pętle while. Trzeba zwrócić uwagę, że gdyby nie warunek b<c to w przypadku tablicy zawierającej same białe żetony doszłoby do wyjścia poza zakres (odwołanie do Kol(0)). Można uniknąć zagnieżdżonych while'i; trzeba jednak uważać aby nie sprawdzać kilka razy koloru tego samego żetonu.
Rozwiązanie 3
W rozwiązaniu 3 każdy żeton jest sprawdzany co najwyżej raz, a każda zamiana ustawia na dobrych miejscach 2 żetony (czyli zamian jest co najwyżej N div 2). Alternatywne rozwiązanie, unikające zagnieżdżonych pętli jest poniżej. Jednak dla tablicy złożonej z jednego żetonu czerwonego i potem samych białych będzie potrzeba N-1 zamian.
Rozwiązanie 4
Zadanie 2 (Flaga holenderska)
Dana jest tablica A typu array[1..N] of integer (N > 0). Należy tak poprzestawiać w niej elementy, żeby najpierw były elementy <0, potem =0, a na końcu >0.
Rozwiązanie 1
Zadanie 3 (Najdłuższe plateau)
Napisz program znajdujący w zadanej tablicy A typu array[1..N] of integer, N > 1, długość najdłuższego stałego segmentu (spójnego fragmentu tablicy).
Możliwe rozwiązania zadania 3
Rozwiązanie 1
Rozwiązanie 2
A co by było gdyby tablica A była posortowana ?
Zadanie 4 (Segment o maksymalnej sumie)
Napisz program znajdujący w zadanej tablicy A typu array[1..N] of integer, N > 1, maksymalną sumę segmentu (spójnego fragmentu tablicy). Przyjmujemy, że segment pusty ma sumę 0.
Możliwe rozwiązania zadania 4
Rozwiązanie trywialne, o kwadratowej złożoności:
Rozwiązanie 1
Rozwiązanie liniowe:
Rozwiązanie 1
Zadanie 5 (Część wspólna zbiorów)
Dane są dwie tablice A i B typu array[1..N] of integer, N > 1. Obie są posortowane rosnąco. Należy traktując A i B jako reprezentacje dwu zbiorów wypisać (operacją write) cześć wspólną tych zbiorów.
Rozwiązanie 1
Zadanie 6 (Suma zbiorów)
Dane są dwie tablice A i B typu array[1..N] of integer, N > 1. Obie są posortowane rosnąco. Należy traktując A i B jako reprezentacje dwu zbiorów wypisać (operacją write) sumę tych zbiorów.
Możliwe rozwiązania zadania 6
Rozwiązanie 1
Rozwiązanie 2
Zadanie 7 (Podciąg)
Dane są dwie tablice A typu array[1..N] of integer i B typu array[1..M] of integer, N, M > 1. Napisz program sprawdzający, czy A jest podciągiem B (tzn. czy istnieje funkcja f, rosnąca, z 1..N w 1..M, t. ze A[i]=B[f(i)]).
Rozwiązanie 1
Zadanie 8 (Odwracanie tablicy)
Dana tablica A typu array[0..N-1] of integer, N > 1. Napisz program odwracający kolejność elementów w A.
Rozwiązanie 1
Zadanie 9 (Przesunięcie cykliczne)
Dana tablica A typu array[0..N-1] of integer, N > 1, i liczba naturalna k > 1. Napisz program realizujący przesunięcie cykliczne w prawo o k pól, czyli przesuwający zawartość pola A[i] na A[(i+k) mod N] dla każdego i < N.
Możliwe rozwiązania zadania
Najprościej rozwiązać to zadanie używając dodatkowej pamięci rozmiaru N.
Rozwiązanie 1
Można też skorzystać z rozkladu na cykle elementów tablicy. Długość każdego takiego cyklu wynosi nww(N,k) a na dodatek pierwsze nwd(N,k) elementów należy do różnych cykli. Dodatkowym kosztem jest oczywiście obliczenie nww i nwd.
Rozwiązanie 2
Można też zauważyć, że przesunięcie cykliczne o k w prawo realizuje się porzez trzy odwrócenia pewnych segmentów w tablicy. Procedura Odwroc pochodzi z zadania 8.
Rozwiązanie 3
Zadanie 10 (Następna permutacja)
Tablica A typu array[1..N] of integer zawiera pewną permutację liczb 1.. N. Napisz program wpisujący do A następną leksykograficznie permutację. Zakładamy, że permutacja w A nie jest ostatnia leksykograficznie.
Rozwiązanie 1
Najpierw szukamy od tyłu pierwszego elementu, takiego że A[i] < A[i+1] (tu korzystamy z zalożenia że to nie ostatnia permutacja), potem szukamy na prawo od i najmniejszego większego od niego elementu k (uwaga: dużo wygodniej to robic od prawej strony!), potem zamieniamy te elementy i odwracamy kolejność elementów na prawo od i.
Zadanie 11 (Segment o zadanej sumie)
Tablica A typu array[1..N] of integer zawiera tylko liczby dodatnie. Napisz program który dla danego W typu integer sprawdza czy w A istnieje segment o sumie W (czyli czy istnieją p, k takie, że W = \Sum_i \in [p ..k-1] A[i])
Rozwiązanie 1
Zadanie 12 (Głosowanie większościowe)
Dana jest tablica A typu array[1..N] of integer, N > 1. Należy sprawdzić czy jest w niej element wystepujący więcej niż N/2 razy i jeśli tak wskazać go.
Możliwe rozwiązania zadania
Najprościej jest dla każdego elementu policzyć liczbę wystąpień w tablicy. Jest to oczywiście rozwiązanie o kwadratowym koszcie czasowym.
Rozwiązanie 1
To zadanie ma też (piękne) rozwiązanie liniowe. Składa się ono z dwu faz. W pierwszej wyznaczamy takie a, że jeśli jest zwycięzca, to jest nim a, w drugiej (banalnej) sprawdzamy czy a wygrał.
Rozwiązanie 2
Zadanie 13 (Arytmetyka liczb wielocyfrowych)
Liczby wielocyfrowe będą reprezentowane w tablicach typu liczba=array[0..N-1] of integer w taki sposób, że najmniej znacząca cyfra jest pod indeksem 0. Rozpatrujemy liczby przy podstawie b ≥ 1. Napisz procedury obliczające:
- sumę liczb A i B do C. Jeśli wynik nie zmieści się w C to wartość C nie ma znaczenia. Zmienna przepełnienie wskazuje czy do niego doszło czy nie.
- różnicę A i B do C. Jeśli wynik miałby byc liczbą ujemną to wartość C nie ma znaczenia. Zmienna ujemny wskazuje jaki jest znak wyniku.
- iloczyn A i B do C (C powinno być tablicą dwa razy dłuższą niż A i B, żeby móc pomieścić wynik).
Rozwiązanie 1
Zadanie INNE (Najdłuższy podciąg niemalejący)
Dana jest tablica A typu array[1..N] of integer, N > 1. Należy obliczyć długość najdłuższego podciągu niemalejącego w A.
Rozwiązanie 1
Kluczowe jest użycie dodatkowej tablicy B rozmiaru N, w której pod indeksem i przechowuje się minimalną wartość kończącą podciąg niemalejący o długości i w dotychczas przejrzanej części tablicy A, od 1 do k. Żeby uwzględnić A[k+1] należy w tablicy B odnależć miejsce na A[k+1] (najlepiej binarnie).