Biografia Kartezjusz (fr. René Descartes, łac. Renatus Cartesius)

Kartezjusz (fr. René Descartes, łac. Renatus Cartesius), (1596-1650) - francuski matematyk i filozof, jeden z najwybitniejszych uczonych XVII w., uważany za prekursora nowożytnej kultury umysłowej.
Kartezjusz zajmował się też optyką, chemią, mechaniką, anatomią, embriologią, medycyną, astronomią i meteorologią. Wywarł wielki wpływ na filozofię i naukę następnych stuleci.
Studiował prawo i medycynę. W 1618 zaciągnął się do armii holenderskiej. W 1625 powrócił do Francji i skierował swe zainteresowania ku naukom matematycznym i fizycznym. W 1649 przyjął zaproszenie królowej szwedzkiej Krystyny, która chciała pod jego kierunkiem studiować filozofię i skorzystać z jego rad przy organizowaniu Szwedzkiej Akademii Nauk.
Miejscowość urodzenia Kartezjusza, La Haye-en-Touraine, w XIX w. została przemianowana na La Haye-Descartes a od 1969 nazywa się Descartes.
Jako filozof Kartezjusz był skrajnym racjonalistą. Próbował on zastosować do filozofii swoją, wziętą z matematyki zasadę znalezienia podstawowego aksjomatu, który by był absolutnie pewny i od którego można by wywieść drogą dedukcji resztę systemu. Analizując podstawy wszystkich sobie znanych systemów filozoficznych, zauważył, że niemal dla każdego stwierdzenia filozoficznego można sformułować jego antytezę i że nie ma sposobu aby ustalić, które z tych twierdzeń jest prawdziwe. Jedyną rzeczą, której nie da się zaprzeczyć jest to, że w danym momencie myślimy.
Niezaprzeczalny fakt istnienia myśli stał się więc jego punktem wyjścia. Idąc drogą dedukcji z faktu że istnieje myślenie można wysnuć wniosek, że istnieje też coś co myśli, czyli ja sam. Ta prosta idea została ujętą w łacińską formułę „Cogito ergo sum” („Myślę, więc jestem”).
Dzieło Kartezjusza Rozprawa o metodzie (fr. Discours de la méthode, 1637), w którym zawarł wyniki swoich badań przyrodniczych, wywołało sensację i zapewniło mu sławę w całej Europie, gdyż było to pierwsze od czasów Arystotelesa całościowe i przekonujące podejście do filozofii, oczyszczające ją z wielu niejasnych i przyjmowanych zbyt pochopnie założeń. Dołączony do Rozprawy... traktat La géométrie (Geometria) zawierał opis zastosowania metody Kartezjusza w geometrii.
Kartezjusz sądził, że geometrii brak ogólnej metody postępowania, a algebra bez właściwego powiązania z geometrią jest trudno zrozumiała intuicyjnie. Traktat zawiera oryginalny pomysł nadania każdemu punktowi na płaszczyźnie nazwy przez przypisanie mu dwóch liczb.
Rozwój idei Kartezjusza doprowadził do powstania geometrii analitycznej, a badania własności geometrycznych krzywych metodami algebraicznymi do powstania rachunku różniczkowego i całkowego, a następnie geometrii różniczkowej.
Kartezjusz po raz pierwszy wprowadził termin „funkcja”, a także nazwę „liczby urojone”. Zapoczątkował też badania wielu problemów teorii równań algebraicznych. Podał również prosty sposób oszacowania liczby dodatnich i ujemnych pierwiastków równania algebraicznego, tzw. regułę znaków Kartezjusza. Znalazł graficzny sposób rozwiązania równania algebraicznego trzeciego stopnia, jak również nowy sposób rozwiązania równania czwartego stopnia.