|
Optyka geometryczna
Rozchodzenie się światła, podobnie jak i fal elektromagnetycznych o innych długościach, polega na przemieszczaniu się w czasie i przestrzeni drgań wektorów natężeń pól: elektrycznego i magnetycznego. Prędkość światła w próżni oznaczyliśmy symbolem . Jak stwierdziliśmy, w innych ośrodkach prędkość ta jest mniejsza, co wynika z równań Maxwella, i zależy od względnej przenikalności elektrycznej i magnetycznej ośrodka. Współczynnik załamania światła w ośrodku definiujemy wzorem , a więc prędkość światła w danym ośrodku można wyrazić następująco: . Przybliżona równość w tym wzorze wynika z faktu, że dla większości ośrodków, w których rozważamy rozchodzenie się światła, wartość przenikalności magnetycznej jest na tyle bliska jedności, że można ją tu pominąć. Otrzymujemy w ten sposób wynikającą z równań Maxwella interesującą zależność między współczynnikiem załamania i przenikalnością elektryczną dla większości (nie ferromagnetycznych) ośrodków . Dodajmy do tego jeszcze, że chociaż w falach elektromagnetycznych mamy do czynienia z drganiami wektorów i , to doświadczalnie stwierdzono decydującą rolę drgań pola elektrycznego dla reakcji fotochemicznych, fotoelektrycznych czy również fizjologicznych. Dlatego w rozważaniach naszych będziemy mówić o drganiach wektora natężenia pola elektrycznego jako o drganiach wektora świetlnego. Stosunek prędkości światła w próżni do prędkości światła w danym ośrodku oznaczyliśmy symbolem i nazywamy współczynnikiem załamania. Często nazywa się go także bezwzględnym współczynnikiem załamania, gdyż określa załamanie światła przy przejściu z próżni do ośrodka. Jeśli światło przechodzi z ośrodka , gdzie rozchodzi się z prędkością do ośrodka , gdzie prędkość światła wynosi , załamanie jest określone przez współczynnik załamania ośrodka drugiego względem ośrodka pierwszego .
|