Test HB

Z Studia Informatyczne
Wersja z dnia 21:49, 11 wrz 2023 autorstwa Luki (dyskusja | edycje) (Zastępowanie tekstu – „,↵</math>” na „</math>,”)
Przejdź do nawigacjiPrzejdź do wyszukiwania

AM1 - mod 2

2. Funkcje elementarne

Przypominamy własności funkcji znanych ze szkoły (funkcja liniowa, homograficzna, wielomianowa, wykładnicza, funkcje trygonometryczne). Definiujemy funkcje hiperboliczne. Rozważamy podstawowe własności funkcji odwrotnych.

2.1 Funkcje różnowartościowe. Funkcje monotoniczne

Z wykładu z teorii mnogości wiemy, że funkcja różnowartościowa jest bijekcją na swój zbiór wartości. Wiemy także, że relacja odwrotna do bijekcji f:Xf(X) jest funkcją i to funkcją różnowartościową określoną na f(X) o wartościach w zbiorze X.

Definicja 2.1.

Niech AX i niech f:XY. Zacieśnieniem (inaczej: zawężeniem lub restrykcją) funkcji f do zbioru A nazywamy funkcję f|A:AY równą funkcji f na zbiorze A, tzn. xA:f|A(x)=f(x).

Definicja 2.2.

Niech f:XY będzie funkcją. Mówimy, że funkcja g:YX jest funkcją odwrotną do funkcji f, jeśli dla dowolnego elementu xX zachodzi równość g(f(x))=x i dla dowolnego elementu yY zachodzi równość f(g(y))=y.

Funkcję odwrotną do funkcji f:XY będziemy oznaczać często symbolem f1:YX, o ile nie prowadzi to do nieporozumienia. Należy odróżniać pojęcie funkcji odwrotnej od odwrotności funkcji, gdzie przez odwrotność funkcji f:X rozumiemy funkcję 1f:Xx1f(x).

Uwaga 2.3.

Niech f,g: będą funkcjami jednej zmiennej. Jeśli g jest funkcją odwrotną do f, to w prostokątnym układzie współrzędnych XOY wykres funkcji g jest obrazem wykresu funkcji f w symetrii osiowej względem prostej y=x.

Definicja 2.4.

Mówimy, że funkcja f: jest rosnąca (odpowiednio: ściśle rosnąca) w przedziale (a,b), jeśli

x,y(a,b) : x<yf(x)f(y)

(odpowiednio: x,y(a,b) : x<yf(x)<f(y))

Definicja 2.5.

Mówimy, że funkcja f: jest malejąca (odpowiednio: ściśle malejąca) w przedziale (a,b), jeśli

x,y(a,b) : x<yf(x)f(y)

(odpowiednio: x,y(a,b) : x<yf(x)>f(y))

Definicja 2.6.

Mówimy, że funkcja jest monotoniczna w przedziale, jeśli w tym przedziale jest rosnąca albo malejąca.

Przykład 2.7.

Funkcja xtgx rośnie w każdym z przedziałów postaci (π2+kπ,π2+kπ) nie jest jednak rosnąca w sumie przedziałów (π2,π2)(π2,3π2). Weźmy bowiem np. argumenty x=π4, y=3π4. Wówczas x<y, ale tgx=1>1=tgy.

Uwaga 2.8

Jeśli g:(c,d)(a,b) jest funkcją odwrotną do funkcji f:(a,b)(c,d), to
a) jeśli f jest rosnąca, to g jest także rosnąca;
b) jeśli f jest malejąca, to g jest również malejąca.
Krótko: funkcja odwrotna do funkcji rosnącej jest rosnąca, a odwrotna do malejącej - malejąca.

2.2 Przegląd funkcji jednej zmiennej rzeczywistej

Definicja 2.9.

Niech a,b będą dowolnymi liczbami rzeczywistymi. Funkcję xax+b nazywamy funkcją afiniczną.

Rysunek am1w02.0010

Uwaga 2.10.

a) Wykresem funkcji afinicznej jest prosta.
b) Funkcja f(x)=ax+b jest ściśle rosnąca, gdy a>0 i ściśle malejąca, gdy a<0. Jest bijekcją zbioru na zbiór , gdy a0.
c) Funkcja odwrotna do funkcji afinicznej jest funkcją afiniczną.
d) Złożenie funkcji afinicznych jest funkcją afiniczną.

Definicja 2.11.

Niech a,b,c,d będą dowolnymi liczbami rzeczywistymi takimi,że adbc0. Funkcję xax+bcx+d nazywamy funkcją homograficzną lub - krótko - homografią.
Rysunek am1w02.0030

Uwaga 2.12.

a) Funkcja afiniczna jest szczególnym przypadkiem funkcji homograficznej.
b) Wykresem funkcji homograficznej f jest prosta (jeśli f jest afiniczna) lub hiperbola (jeśli f nie jest afiniczna).
c) Funkcja odwrotna do homografii jest homografią.
d) Złożenie homografii jest homografią.

Definicja 2.13.

Niech a będzie stałą, niech n=0,1,2,3,.. będzie liczbą całkowitą nieujemną, a x - zmienną. Wyrażenie algebraiczne axn nazywamy jednomianem zmiennej x. Jeśli a0,to liczbę n nazywamy stopniem jednomianu axn. Sumę w(x)=00+a1x+a2x2+...+anxn skończonej liczby jednomianów zmiennej x nazywamy wielomianem zmiennej x. Największy ze stopni tych jednomianów, nazywamy stopniem wielomianu.

Rysunek am1w02.0050
Animacja am1w02.0060

Definicja 2.14.

Funkcję xw(x)=a0+a1x+a2x2+...+anxn nazywamy funkcją wielomianową lub - krótko - wielomianem.

Uwaga 2.15.

a) Suma oraz iloczyn wielomianów jest wielomianem.
b) Złożenie funkcji wielomianowych jest funkcją wielomianową.

Wykażmy użyteczne oszacowanie z dołu wielomianu x(1+x)n za pomocą funkcji afinicznej x1+nx.

Uwaga 2.16[nierówność Bernoullego]

Dla dowolnej liczby całkowitej nieujemnej n=0,1,2,3,.. i dowolnej liczby rzeczywistej x1 zachodzi nierówność

Parser nie mógł rozpoznać (błąd składni): {\displaystyle (1+x)^n\ \geq\1+nx} ,

przy czym dla n>1 równość w powyższej nierówności zachodzi wyłącznie dla x=0.

Animacja am1w02.0070

Dowód

Zauważmy, że nierówność zachodzi dla n=0 i n=1. Wykażemy, że dla dowolnej liczby naturalnej k1prawdziwa jest implikacja

[x>1:(1+x)k1+kx][x>1:(1+x)k+11+(k+1)x]

Mamy bowiem:

(1+x)k+1=(1+x)(1+x)k(1+x)(1+kx)=1+(1+k)x+kx21+(1+k)x.

Na mocy zasady indukcji matematycznej nierówność zachodzi więc dla każdej liczby całkowitej nieujemnej n=0, 1, 2, 3, ... Zauważmy, że składnik xkx2 dla k1 zeruje się wyłącznie w punkcie x=0, stąd nierówność Bernoullego jest ostra poza tym punktem, a jedynie dla x=0 zachodzi równość w tej nierówności.

Definicja 2.17.

Niech n{2,3,4,...} będzie liczbą naturalną większą od jedności. Liczbę nieujemną y nazywamy pierwiastkiem arytmetycznym stopnia n z liczby nieujemnej x, jeśli xn=y Pierwiastek stopnia n z liczby x0 oznaczamy symbolem Parser nie mógł rozpoznać (nieznana funkcja „\root”): {\displaystyle \root{n}\of{x}} .
Rysunek am1w02.0080

Uwaga 2.18.

a) Funkcja xxn jest różnowartościowa wtedy i tylko wtedy, gdy n jest liczbą nieparzystą.
b) Jeśli n>0 jest parzystą liczbą naturalną, to zacieśnienie funkcji f(x)=xn do przedziału [0,) jest funkcją różnowartościową. Funkcją odwrotną do niej jest funkcja pierwiastek stopnia Parser nie mógł rozpoznać (nieznana funkcja „\root”): {\displaystyle n g(x)=\root{n}\of{x}} określona na przedziale [0,) o wartościach w [0,).
c) Jeśli n>0 jest nieparzystą liczbą naturalną, to funkcja f(x)=xn jest różnowartościowa na przedziale (,+). Funkcją odwrotną do niej jest funkcja

Parser nie mógł rozpoznać (nieznana funkcja „\root”): {\displaystyle g(x) = \left\{ \begin{align} \root{n}\of{x}, \text{ dla } x\geq 0\\ -\root{n}\of{-x}, \text{ dla } x< 0 \end{align} \right }
Uwaga 2.19.

Jeśli n jest liczbą naturalną nieparzystą,często używa się symbolu pierwiastka arytmetycznego do oznaczenia funkcji odwrotnej do funkcji f(x)=xn i oznacza się ją krótko Parser nie mógł rozpoznać (nieznana funkcja „\root”): {\displaystyle g(x)=\root{n}\of{x}} , przy czym sens tego symbolu dla liczb rzeczywistych ujemnych określa się jak powyżej.

2.3 Funkcja wykładnicza i logarytmiczna

Definicja 2.20

Niech a>0 będzie dowolną dodatnią liczbą rzeczywistą. Funkcję xax określoną na zbiorze liczb

rzeczywistych nazywamy funkcją wykładniczą o podstawie a.
Uwaga 2.21.

a) Jeśli a>0, a1, funkcja wykładnicza xax jest bijekcją zbioru na przedział (0,). Nie zeruje się w żadnym punkcie swojej dziedziny.

Rysunek am1w02.0090

b) Jeśli a>1, funkcja xax jest ściśle rosnąca, jeśli zaś 0<a<1, jest ściśle malejąca.

c) Jeśli a=1, funkcja xax jest stała.

Rysunek am1w02.0100

Definicja 2.22.

Niech a(0,1)(1,) będzie dowolną liczbą rzeczywistą dodatnią, różną od jedności. Funkcję odwrotną do funkcji xax nazywamy funkcją logarytmiczną o podstawie a i oznaczamy xlogax.

Na ogół pomija się indeks a w oznaczeniu logarytmu liczby x i pisze się krótko logx. Zwróćmy jednak uwagę na fakt, że w zależności od dziedziny nauki, czy techniki, symbol ten może oznaczać logarytmy o różnych podstawach. I tak informatycy na ogół posługują się tym symbolem mając na myśli logarytm o podstawie 2, tzn. logx=log2x. Z kolei w naukach technicznych symbol logx=log10x oznacza przeważnie logarytm dziesiętny. Natomiast matematycy posługują się najczęściej logarytmem o podstawie e=2,71828182846.. (do definicji i własności tej ważnej stałej powrócimy w następnych modułach). Stąd często w pracach matematycznych symbol logx=logex oznacza właśnie logarytm o podstawie e. My jednak, aby uniknąć nieporozumień, logarytm o podstawie e będziemy oznaczać osobnym symbolem lnx.

Definicja 2.23.

Symbolem expx będziemy oznaczać potęgę ex.

Definicja 2.24.

Logarytmem naturalnym z liczby dodatniej x nazywamy liczbę lnx=logex.
Uwaga 2.25.

a) Jeśli a>0, a1, funkcja logarytmiczna xlogax jest bijekcją przedziału (0,) na zbiór .

Rysunek am1w02.0110

Rysunek am1w02.0120

b) Jeśli a>1, funkcja xlogax jest ściśle rosnąca, jeśli zaś 0<a<1, jest ściśle malejąca.

c) Jedynym miejscem zerowym funkcji logarytmicznej xlogax jest punkt x=1.

d) Jeśli a>1, to logarytm logax jest dodatni w przedziale (1,) i jest ujemny w przedziale (0,1). Jeśli zaś 0<a<1, to logarytm logax jest ujemny w przedziale (1,) i jest dodatni w przedziale (0,1).

Przypomnijmy jeszcze parę tożsamości, z których często będziemy korzystać.

Uwaga 2.26.

a) Dla a>0, x,y zachodzą równości

(ax)y=axy oraz axay=ax+y

b) Dla dodatnich liczb a,b,c, a1, c1 prawdziwy jest wzór na zmianę podstawy logarytmu

logab=logcblogca

w szczególności, gdy c=e, mamy równość

logab=lnblna

c) Dla dowolnej liczby b i dodatnich a>0, c>0 zachodzi równość

ab=cblogca

która w szczególnym przypadku, gdy c=e, ma postać

ab=exp(blna)

2.4 Funkcje trygonometryczne i funkcje cyklometryczne

Przypomnijmy kilka własności funkcji trygonometrycznych sinus, cosinus, tangens i cotangens. Żadna z nich nie jest różnowartościowa w swojej dziedzinie.

Rysunek am1w02.0140

Uwaga 2.27.

a) Funkcja f(x)=sinx zacieśniona do przedziału [π2,π2] jest różnowartościowa, ściśle rosnąca.
Rysunek am1w02.0150
b) Funkcja f(x)=cosx zacieśniona do przedziału [0,π] jest różnowartościowa, ściśle malejąca.
Rysunek am1w02.0160
c) Funkcja f(x)=tgx zacieśniona do przedziału (π2,π2) jest różnowartościowa, ściśle rosnąca.
Rysunek am1w02.0170
d) Funkcja f(x)=ctgx zacieśniona do przedziału (0,π) jest różnowartościowa, ściśle malejąca.

Pamiętamy również, że zachodzi

Twierdzenie 2.28.

Dla dowolnej liczby rzeczywistej x suma kwadratów cosinusa i sinusa jest równa jedności, tzn. x:cos2x+sin2x=1.

Tożsamość tę nazywamy jedynką trygonometryczną.
Rysunek am1w02.0180

Definicja 2.29.

Funkcję określoną na przedziale [1,1] o wartościach w przedziale [π2,π2], odwrotną do zacieśnienia funkcji sinus do przedziału [π2,π2],nazywamyarcusem sinusem i oznaczamy symbolem xarcsinx.
Rysunek am1w02.0190

Definicja 2.30

Funkcję określoną na przedziale [1,1] o wartościach w przedziale [0,π], odwrotną do zacieśnienia funkcji cosinus do przedziału [0,π], nazywamy arcusem cosinusem i oznaczamy symbolem xarccosx.
Rysunek am1w02.0200

Definicja 2.31.

Funkcję określoną na przedziale (,) o wartościach w przedziale (π2,π2), odwrotną do zacieśnienia funkcji tangens do przedziału (π2,π2), nazywamy arcusem tangensem i oznaczamy symbolem xarctgx.
Rysunek am1w02.0200

Definicja 2.32.

Funkcję określoną na przedziale (,) o wartościach w przedziale (0,π), odwrotną do zacieśnienia funkcji cotangens do przedziału (0,π), nazywamy arcusem cotangensem i oznaczamy symbolem xarcctgx.

Funkcje: arcus sinus, arcus cosinus, arcus tangens i arcus cotangens nazywamy funkcjami cyklometrycznymi.

Uwaga 2.33.

Funkcje arcus sinus i arcus tangens są ściśle rosnące. Funkcje arcus cosinus i arcus cotangens -- ściśle malejące.

Ze wzorów redukcyjnych: sin(π2x)=cosx oraz tg(π2x)=ctgx wynika, że

Uwaga 2.34.

a) Dla dowolnej liczby 1x1 zachodzi równość arccosx=π2+arcsin(x)
b) Dla dowolnej liczby <x< zachodzi równość arcctgx=π2+arctg(x)

2.5 Funkcje hiperboliczne i funkcje area

Określimy teraz cztery funkcje, których nazwy są nieprzypadkowo zbieżne z nazwami funkcji trygonometrycznych.

Definicja 2.35.

Niech x(,+).
Rysunek am1w02.0210
a) Sinusem hiperbolicznym nazywamy funkcję sinh:x12(exex).
Rysunek am1w02.0220
b) Cosinusem hiperbolicznym nazywamy funkcję cosh:x12(ex+ex).
Rysunek am1w02.0230
c) Tangensem hiperbolicznym nazywamy funkcję Parser nie mógł rozpoznać (nieznana funkcja „\tgh”): {\displaystyle \tgh :x\mapsto\frac{\sinh x}{\cosh x}} .
Rysunek am1w02.0240
d) Cotangensem hiperbolicznym nazywamy funkcję Parser nie mógł rozpoznać (nieznana funkcja „\ctgh”): {\displaystyle \ctgh :x\mapsto\frac{1}{\tgh x}} .

Wykażmy wpierw tożsamość, którą przez analogię do znanej tożsamości trygonometrycznej, wiążącej wartości funkcji sinus i cosinus, nazwiemy jedynką hiperboliczną.

Twierdzenie 2.36.

Dla dowolnej liczby rzeczywistej różnica kwadratów funkcji hiperbolicznych cosinus i sinus jest równa jedności, tzn. zachodzi równość

x:cosh2xsinh2x=1

Dowód twierdzenia 2.36.

Z definicji funkcji sinh i cosh mamy:

Parser nie mógł rozpoznać (nieznana funkcja „\begin{align}”): {\displaystyle \begin{align} 4(\cosh^2 x-\sinh^2 x) \ &=\ (e^x+e^{-x})^2-(e^x-e^{-x})^2 \ \\ &=\ (e^{2x}+2+e^{-2x})-(e^{2x}-2+e^{-2x}) = 4, \end{align}}

stąd

x:cosh2xsinh2x=1

W podobny sposób - wprost z definicji - można wykazać, że zachodzą następujące tożsamości analogiczne do znanych tożsamości trygonometrycznych:

sin(x+y)=sinxcosy+cosxsiny,cos(x+y)=cosxcosysinxsiny

Twierdzenie 2.37.

Niech x,y będą dowolnymi liczbami rzeczywistymi. Wówczas:
a) sinh(x+y)=sinhxcoshy+coshxsinhy
b) cosh(x+y)=coshxcoshy+sinhxsinhy

Tożsamości te wykażemy w ramach ćwiczeń do tego modułu.

Uwaga 2.38.

Dla dowolnej liczby rzeczywistej mamy:

cosh2x=cosh2x+sinh2x=2cosh2x1=1+2sinh2x,sinh2x=2sinhxcoshx.

Warto porównać otrzymane wzory z poznanymi w szkole analogicznymi wzorami dla funkcji trygonometrycznych:

cos2x=cosh2xsin2x=2cos2x1=12sin2x,sin2x=2sinxcosx.

Podkreślmy kilka własności funkcji hiperbolicznych.

Uwaga 2.39

a) Funkcja sinus hiperboliczny jest bijekcją na . Jest nieparzysta, ściśle rosnąca.
b) Funkcja cosinus hiperboliczny jest określona na i przyjmuje wartości w przedziale [1,). Jest funkcją parzystą. Nie jest różnowartościowa. Jej zacieśnienie do przedziału [0,) jest funkcją ściśle rosnącą.
c) Funkcja tangens hiperboliczny jest bijekcją na przedział (1,1). Jest nieparzysta, ściśle rosnąca.
d) Funkcja cotangens hiperboliczny jest bijekcją zbioru (,0)(0,+) na zbiór (,1)(1,+). Jest nieparzysta, ściśle malejąca w przedziale (,0) i w przedziale (0,) .

Określmy funkcje odwrotne do funkcji hiperbolicznych. Nazywamy je funkcjami area.
Rysunek am1w02.0280

Definicja 2.40.

a) Funkcję odwrotną do funkcji sinus hiperboliczny nazywamy area sinusem hiperbolicznym i oznaczamy xarsinhx.
Rysunek am1w02.0290
b) Funkcję odwrotną do zacieśnienia funkcji cosinus hiperboliczny do przedziału [0,) nazywamy area cosinusem hiperbolicznym i oznaczamy xarcoshx.
Rysunek am1w02.0300
c) Funkcję odwrotną do funkcji tangens hiperboliczny nazywamy area tangensem hiperbolicznym i oznaczamy xartghx.
Rysunek am1w02.0310
d) Funkcję odwrotną do funkcji cotangens hiperboliczny nazywamy area cotangensem hiperbolicznym i oznaczamy xarctghx.

Zwróćmy uwagę na tożsamości (kilka podobnych wykażemy w ramach ćwiczeń):

Uwaga 2.41.

Prawdziwe są następujące równości:
a) cos(arcsinx)=1x2 dla |x|1
b) cosh(arsinhx)=1+x2 dla <x<

Dowód

a) Niech y=arcsinx. Wówczas dla 1x1 mamy π2yπ2, czyli 0cosy1. Z jedynki trygonometrycznej wynika,że

cosy=1sin2y=1x2

b) Należy powtórzyć powyższe rozumowanie stosując jedynkę hiperboliczną zamiast jedynki trygonometrycznej.

Funkcje area można wyrazić także za pomocą logarytmu naturalnego.

Twierdzenie 2.42

Zachodzą następujące tożsamości:
a) arsinhx=ln(x+x2+1) dla <x<
b) arcoshx=ln(x+x21) dla 1x<
c) artghx=ln1+x1x dla 1<x<1
d) arctghx=lnx+1x1 dla |x|>1

Dowód twierdzenia 2.42.

a) Wyznaczamy zmienną y z równania: x=sinhy.Mamy

x=eyey2=e2y1ey

Stąd ey=x+x2+1, czyli arsinhx=ln(x+x2+1) dla wszystkich <x<

b) Podobnie jak w punkcie a) wyznaczamy zmienną y z równania x=coshy i otrzymujemy ey=x+x21, czyli arcoshx=ln(x+x21), dla x1.

c) Z równania x=artghx dostajemy e2y=1+x1x, czyli

artghx=12ln1+x1x=ln1+x1x

dla |x|<1.

d) Pamiętając, że Parser nie mógł rozpoznać (nieznana funkcja „\ctgh”): {\displaystyle \ctgh x=\frac{1}{\tgh x}} , podstawiamy w poprzedniej tożsamości 1x w miejsce zmiennej x i otrzymujemy:

arctghx=ln1+1x11x=lnx+1x1

dla |x|>1

W ramach ćwiczeń wykażemy zaskakującą - na pierwszy rzut oka - uwagę.

Uwaga 2.43.

a) Dla dowolnej liczby n=0,1,2,.. funkcja

Tn(x)=cos(narccosx),  1x1,

jest wielomianem zmiennej x.
b) Dla dowolnej liczby n=0,1,2,.. funkcja

Un(x)=cosh(narcoshx),x1,

jest wielomianem zmiennej x.
c) Dla dowolnej liczby n=0,1,2,.. funkcje Tn oraz Un są zacieśnieniami -- odpowiednio do przedziałów [1,1] oraz [1,+) tego samego wielomianu Wn zmiennej x, to znaczy dla dowolnej liczby n=0,1,2,.. istnieje funkcja wielomianowa Wn:xWn(x) taka, że zachodzą równości

Wn(x)=Tn(x) dla 1x1Wn(x)=Un(x) dla +1x

animacja am1w02.0320

Definicja 2.44.

Wielomian Wn, o którym mowa w powyższej uwadze, którego zacieśnieniem do przedziału [1,1] jest funkcja Tn:xcos(narccosx), nazywamy wielomianem Czebyszewa stopnia n, n=0,1,2,...