Teoria informacji/TI Wykład 4
Minimalna długość kodu - kontynuacja
Aby oszacować , zaczniemy od uzupełnienia naszej nierówności o górne ograniczenie.
Twierdzenie [Kod Shannona-Fano]
W ten sposób mamy
Dowód
dla tych , dla których . Wtedy
Rozważmy kilka przypadków. W najprostszym, kiedy , powyższa nierówność odpowiada dokładnie nierówności Krafta, a zatem istnieje kod spełniający dla wszystkich . Uwzględniając, że , dostajemy
Załóżmy zatem, że może być równe 0. Jeśli
to łatwo możemy rozszerzyć definicję na wszystkie s, tak że nierówność Krafta dalej będzie spełniona. Będzie zatem istniał kod o długościach , spełniający zawsze, gdy , a więc
(Pamiętamy o naszej konwencji .)
Ostatni przypadek to taki, gdy
Wybierzmy s’, takie że , i zdefiniujmy nowe długości
Znów możemy rozszerzyć na wszystkie w taki sposób, żeby zachować nierówność Krafta. Aby obliczyć średnią długość kodu musimy zauważyć, że w tym przypadku mieliśmy zawsze gdy tylko . (Wynika to z tego, że z definicji musi być i , a więc gdy .)
Kod o długości spełnia

Jesteśmy gotowi do sformułowania pierwszego z głównych twierdzeń tego wykładu:
Twierdzenie [Pierwsze Twierdzenie Shannona]
Dla każdej skończonej przestrzeni probabilistycznej S i
Dowód