Teoria informacji/TI Ćwiczenia 5

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

Laboratorium

Zadanie 1

Treść

Rozważmy trzy warianty kompresji pliku tekstowego, które wykorzystują korelację między sąsiednimi symbolami do osiągnięcia większego stopnia kompresji:

  1. Kodowanie Huffmana zastosowane do bloków 2 symboli.
  2. Kodowanie kolejnego symbolu pliku, an+1, za pomocą kodu Huffmana, który zależy od symbolu poprzedniego, an.
    W algorytmie tym, dla każdego symbolu a występującego w pliku, obliczany jest warunkowy rozkład prawdopodobieństwa następnego symbolu, b, pod warunkiem a: p(b|a). Dla takiego rozkładu symboli b (przy ustalonym a) obliczany jest kod Huffmana φa. Kody są generowane dla wszystkich symboli a.
    Symbole pliku są kodowane kolejno, od pierwszego do ostatniego, przy czym symbol an+1 kodowany jest za pomocą kodu φan. Tak zakodowana wiadomość jest możliwa do odkodowania, ponieważ w chwili dekodowania an+1 symbol an jest już znany.
  3. Kodowanie analogiczne do (2), jednak przebiegające od końca pliku do początku, zatem korzystające z kodu φan+1 do zakodowania an. W tym przypadku φb jest kodem wygenerowanym dla rozkładu p(a|b) symboli a poprzedzających ustalony symbol b.

Polecenie

  1. Porównaj warianty (1) i (2) oraz (2) i (3) pod względem osiąganego stopnia kompresji:
    • Który z wariantów pozwoli uzyskać większy stopień kompresji? Czy zależy to od charakterystyki danych wejściowych? Jeśli to możliwe, podaj ścisły dowód.
    • Czy fakt, że znaki w pliku tekstowym są zapisane w "naturalnej" kolejności, czyli w takiej, w jakiej są odczytywane przez człowieka, pozwala na uzyskanie większego stopnia kompresji za pomocą metody (2) niż (3)?
    • Oprócz wariantów (1)-(3) rozważ też sytuację, gdy zamiast kodu Huffmana stosowany jest kod, którego średnia długość jest dokładnie równa entropii odpowiedniego rozkładu (dla zainteresowanych: kodowanie arytmetyczne jest metodą, która w pewnym sensie pozwala osiągnąć średnią długość kodu równą entropii; zob. arithmetic coding).
  2. Jaka jest złożoność pamięciowa i czasowa metod (1)-(3)?
  3. Napisz programy kompresuj1, kompresuj2 i kompresuj3, implementujące algorytmy (1)-(3). Wykonaj eksperymenty, które potwierdzą poprawność Twoich odpowiedzi na powyższe pytania.

Wskazówki

Wskazówka I:
Wskazówka II:

Rozwiązanie

Rozwiązanie zadania powinno zawierać:

  • wykonywalne programy,
  • kody źródłowe programów,
  • dane wejściowe wykorzystane do eksperymentów,
  • raport zawierający:
    • odpowiedzi na pytania, być może z dowodami,
    • opis wykonanych eksperymentów i wykorzystanych danych wejściowych,
    • interpretację wyników eksperymentów.

Pliki źródłowe i raport należy podpisać imieniem i nazwiskiem autora.

Ocenie podlegać będzie: poprawność i ścisłość rozumowania, poprawność implementacji, umiejętność zaplanowania eksperymentów i interpretacji ich wyników. Nie będzie brana pod uwagę efektywność czasowa i pamięciowa programów.


Zadanie 2

Treść

Dane wejściowe mają postać ciągu {ai}1n znaków nad alfabetem {'a',...,'z','0',...,'9',' '}. Kolejne znaki tego ciągu są generowane losowo z następującego rozkładu:

  1. a1 jest generowany z rozkładu μ