Matematyka dyskretna 1/Ćwiczenia 13: Grafy II
Grafy II
Ćwiczenie 1
Kostka -wymiarowa jest grafem, którego wierzchołki to ciągi , gdzie , a krawędzie łączą te ciągi, które różnią się tylko na jednej pozycji. Oblicz liczbę wierzchołków, krawędzi oraz rozmiar najdłuższego cyklu.
- Wierzchołki Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle {\sf V}\!\left(\mathcal{Q}_{k}\right) } odpowiadają ciągom , gdzie . Liczba -elementowych ciągów liczb z dwuelementowego zbioru wynosi .
- Z kolei krawędzie łączą te ciągi, które różnią się na jednej tylko pozycji. Ciąg ze względu na konkretną pozycję jest sąsiedni z dokładnie jednym ciągiem. Stopień dowolnego wierzchołka równy jest więc . Ponieważ każda krawędź ma dwa końce, to liczba wszystkich krawędzi jest równa .
- Najdłuższy cykl w jest cyklem przechodzącym przez wszystkie wierzchołki. Wykażemy jego istnienie indukcyjnie ze względu na , pokazując ścieżkę z wierzchołka do , przechodzącą przez wszystkie wierzchołki.
Kostkę można rozłożyć na dwie kostki w ten sposób, że w pierwszej znajdą się wszystkie wierzchołki odpowiadające ciągom zaczynającym się od , czyli , a w drugiej wierzchołki odpowiadające ciągom zaczynającym się od , czyli . Na mocy założenia indukcyjnego otrzymujemy ścieżkę z wierzchołka do , przechodzącą przez wszystkie wierzchołki pierwszej kostki. Analogicznie otrzymujemy także ścieżkę z wierzchołka do , przechodzącą przez wszystkie wierzchołki drugiej kostki. Po złożeniu obu ścieżek w ścieżkę postaci
otrzymujemy szukaną ścieżkę. W konsekwencji otrzymujemy, że najdłuższa ścieżka
składa się ze wszystkich wierzchołków.
Przykładowy, -elementowy cykl w kostce ,
przedstawiony jest na rysunku 1.
Ćwiczenie 2
Dla jakich wartości grafy , , są eulerowskie.
Ćwiczenie 3
Przedstaw cztery pięciowierzchołkowe grafy -- kolejno graf który:
- nie jest hamiltonowski i nie jest eulerowski
- nie jest hamiltonowski, ale jest eulerowski
- jest hamiltonowski i nie jest eulerowski
- jest hamiltonowski i eulerowski.
Ćwiczenie 4
Dla jakich wartości grafy , , są hamiltonowskie.
Ćwiczenie 5
Czy graf Petersena (patrz rys. 3) ma ścieżkę Hamiltona.
{rys. 3 Graf Petersena. Rysunek z pliku:cwgrafypetersen.eps}
Ćwiczenie 6
Podaj przykład grafu ilustrujący, że warunek występujący w Twierdzeniu Diraca 13.5 nie może być zastąpiony warunkiem .
Ćwiczenie 7
Wykaż, że elementowy jest hamiltonowski jeśli tylko ma przynajmniej krawędzi. Podaj przykład grafu niehamiltonowskiego z wierzchołkami i krawędziami.
Ćwiczenie 8
Wykaż, że każde drzewo jest grafem dwudzielnym. Które drzewa są pełnymi grafami dwudzielnymi?
Ćwiczenie 9
Udowodnij wierzchołkową wersję Twierdzenia Mengera.
Ćwiczenie 10
Korzystając z Twierdzenia Mengera udowodnij Twierdzenie Halla o skojarzeniach w grafach dwudzielnych.