Zaawansowane algorytmy i struktury danych/Wykład 6
Abstrakt
W wykładzie tym zajmiemy się problemem obliczanie odległości w grafie między wszystkimi parami wierzchołków w grafie ważonym skierowanym . Przedstawimy trzy algorytmu rozwiązujące ten problem:
- algorytm wykorzystujący mnożenie macierzy działający w czasie ,
- algorytm Floyda-Warshalla działający w czasie ,
- algorytm Johnsona działający w czasie .
Problem najkrótszych ścieżek między wszystkimi parami wierzchołków
Problem najkrótszych ścieżek między wszystkimi parami wierzchołków można rozwiązać, wykonując razy algorytm dla problemu najkrótszych ścieżek z jednego wierzchołka. Jeżeli w grafie wagi krawędzi są nieujemne to możemy użyć algorytmu Dijkstry. Najszybsza implementacji algorytmu Dijskstry wykorzystująca kopce Fibonacciego działa w czasie , co daje nam algorytm rozwiązujący problem policzenia odległości między wszystkimi parami wierzchołków działający w czasie .
Jednakże tego rozwiązania nie możemy użyć jeżeli w grafie wagi krawędzi mogą być ujemne. W takim przypadku możemy użyć algorytm Bellmana-Forda. Otrzymamy wtedy algorytm działający w czasie . W rozdziale tym zaprezentujemy bardziej efektywne rozwiązania dla tego problemu.
W rozdziale tym będziemy zakładać, że algorytmy na wejściu otrzymują macierz wag rozmiaru reprezentującą wagi krawędzi -wierzchołkowego grafu . Dla macierzy tej zachodzi:
W problemie najkrótszych ścieżek między wszystkimi parami wierzchołków chcemy wyznaczyć macierz rozmiaru
taką, że jest równe odległości z wierzchołka do wierzchołka . Chcemy także wyznaczyć dla każdego wierzchołka drzewo najkrótszych ścieżek ukorzenione w . Podobnie jak w
poprzednim rozdziale drzewo możemy kodować dla każdego wierzchołka przy pomocy funkcji poprzedników . Ponieważ tutaj interesuje nas wiele drzew to łatwiej będzie nam używać 'macierzy poprzedników . Macierz tą definiujemy używając funkcji w następujący sposób:
W pozostałej części tego wykładu zajmiemy się tylko wyznaczaniem macierzy odległości . Jak to zostało pokazane w Zadaniu 3 do poprzedniego wykładu znając odległości w grafie drzewo najkrótszych ścieżek można wyznaczyć w czasie , a więc drzew możemy wyliczyć w czasie . Czas ten jest mniejszy niż czas działania wszystkich prezentowanych w tym wykładzie algorytmów, więc bez straty ogólności, a zyskując na prostocie prezentacji możemy ograniczyć się tylko do wyznaczenia macierzy odległości .
Co więcej będziemy zakładać, że w grafie nie ma ujemnych cykli. Ujemne cykle można wykryć w czasie przy użyciu Algorytmu Bellmana-Forda. Zobacz Zadanie 4 do Wykładu 4.
Najkrótsze ścieżki i mnożenie macierzy
Załóżmy, że dane mamy dwie macierze wag oraz rozmiaru . Dla macierzy tych definiujemy operację iloczyn odległości, której wynikiem jest także macierz rozmiaru , zdefiniowana jako:
(1)
Wniosek 1
Pokażemy teraz, że produkt odległości jest operacją łączną.
Lemat 2
Dowód

Co więcej produkt odległości jest przemienny względem dodawania.
Lemat io_przemienny
oraz
Dowód

Zdefiniujmy macierz rozmiaru jako:
Macierz ta jest jedynką dla iloczynu odległości.
Lemat 4
Dowód
Łączność iloczynu odległości ma dla nas bardzo ważne konsekwencję i pozwoli nam na konstrukcję algorytmu obliczania odległości w grafie między wszystkimi parami wierzchołków działającego w czasie . Niech będzie macierzą wag grafu . Rozważmy macierz zdefiniowaną jako:
Pokażemy teraz, że macierz opisuje odległości między wierzchołkami grafu ale tylko dla ścieżek używających mniej niż krawędzi.
Lemat 5
Dowód

Zajmiemy się teraz konstrukcją algorytmu obliczającego najkrótsze ścieżki w grafie. W tym celu będziemy potrzebowali jeszcze udowodnić następujące dwa lematy.
Lemat 6
Dowód

Zauważmy, że iloczyn odległości dwóch macierzy możemy policzyć w czasie wykorzystując następujący algorytm.
Algorytm Mnożenia macierzy odległości
MNOŻENIE-ODLEGŁOŚCI(C,D) 1 macierz rozmiaru 2 for to do 3 for to do 4 5 for to do 6 e_{i,j} = \min(c_{i,k} + d_{k,j}, e_{i,j}) 7 return D'
Ponieważ operacja iloczynu odległości jest łączna to możemy wykorzystać algorytm szybkiego potęgowania i policzyć odległości przy pomocy następującego algorytmu.
Algorytm Algorytm obliczania odległości między wszystkimi parami wierzchołków I
ODLEGŁÓŚCI-I(W) 1 , 2 3 while do 4 MNOŻENIE-ODLEGŁOŚCI 5 7 return
Poprawności tego algorytmu wynika wprost z Lematu 6 ponieważ na zakończenie algorytmu i .
Algorytm Floyda-Warshalla
W algorytmie Floyda-Warshalla wykorzystamy inną cechę najkrótszych ścieżek niż ta użyta w algorytmie z wykorzystaniem iloczynu odległości. W poprzednim algorytmie konstruowaliśmy coraz dłuższe ścieżki, natomiast tutaj będziemy konstruować ścieżki przechodzące przez coraz większy zbiór wierzchołków. Wierzchołkiem {{kotwica|wierzchołek_wewnetrzny|wewnetrznym} ścieżki jest każdy wierzchołek na ścieżce różny od jej początku i końca .
Niech zbiorem wierzchołków grafu będzie . Niech dla oznacza najmniejszą wagę ścieżki z do , spośród ścieżek których wierzchołki wewnętrzne należą do zbioru . Pokażemy następujący rekurencyjny wzór na .
{{lemat|7|lemat_7|3= Dla zachodzi:
(2)
Dowód
Niech będzie najkrótszą ścieżką z do , której wierzchołki wewnętrzne należą do zbioru . Mamy dwa przypadki:
- Wierzchołek nie leży na ścieżce . Wtedy zachodzi . Ponieważ jest najkrótszą ścieżką to także i powyższy wzór zachodzi.
- Jeżeli wierzchołek należy do ścieżki , to występuje on dokładnie raz i możemy podzielić na dwie ścieżki z do oraz z do . Ścieżki i nie zawierają wierzchołka jako wierzchołka wewnętrznego. Ponieważ są to podścieżki najkrótszej ścieżki, więc same też są najkrótsze. Zachodzi więc dla nich oraz . Otrzymujemy więc . Ponieważ jest najkrótszą ścieżką to i wzór zachodzi także w tym przypadku.
Wykorzystując wzór (2) możemy skonstruować następujący algorytm obliczający w czasie odległości między wszystkimi parami wierzchołków.
Algorytm Algorytm Floyda-Warshalla
ODLEGŁÓŚCI-II(W) 1 , 2 for to do 3 for to do 4 for to do 5 6 return