TTS Moduł 2
Wykład
![]() |
![]() |
Słownik
- Częstotliwość graniczna - częstotliwość powyżej której może się propagować fala w falowodzie. Poniżej tej częstotliwości fala jest silnie tłumiona.
- Mikrofale - zakres częstotliwości fal elektromagnetycznych od 300 MHz do 1000 GHz.
- Równania Maxwella - fundamentalne równania techniki mikrofalowej opisujące pole elektromagnetyczne w czasie i przestrzeni.
- Przenikalność dielektryczna i magnetyczna -Podstawowe parametry opisujące właściwości przestrzeni odpowiednio dla pola elektrycznego i magnetycznego.
- Podstawowe parametry pola elektromagnetycznego:
- Natężenie pola elektrycznego .
- Natężenie pola magnetycznego .
- Indukcja pola elektrycznego - wielkość wektorowa proporcjonalna do natężenia pola elektrycznego i przenikalności dielektrycznej.
- Indukcja pola magnetycznego - wielkość wektorowa proporcjonalna do natężenia pola magnetycznego i przenikalności magnetycznej.
- I prawo Maxwella - z pierwszego równania Maxwella widać że zmienne pole magnetyczne jest źródłem zmiennego pola elektrycznego
- W postaci całkowej jest zapisem prawa Faradaya i wiąże ze sobą zmianę strumienia indukcji magnetycznej przenikającego powierzchnię S z polem elektrycznym E całkowanym wzdłuż zamkniętego konturu C otaczającego tą powierzchnię (zal. 2-1).
- W postaci różniczkowej I prawo Maxwella mówi, że rotacja pola elektrycznego jest równa pochodnej indukcji magnetycznej po czasie (zal.2-6).
- II prawo Maxwella - z drugiego równania Maxwella widać że źródłem zmiennego pola magnetycznego jest zmienny w czasie prąd lub zmienne pole elektryczne.
- W postaci całkowej jest zapisem prawa Ampera i wiąże ze sobą zmianę strumienia indukcji elektrycznej i prąd przenikający powierzchnię S z polem magnetycznym E całkowanym wzdłuż zamkniętego konturu C otaczającego tą powierzchnię (zal. 2-2).
- W postaci różniczkowej II prawo Maxwella mówi nam że rotacja pola magnetycznego jest równa pochodnej indukcji elektrycznej i prądu po czasie (zal.2-6).
- III prawo Maxwella - jest zapisem prawa Gaussa dla pola elektrycznego i mówi, że źródłem pola indukcji elektrycznej są ładunki elektryczne.
- W postaci całkowej prawo to mówi że strumień wektora indukcji pola elektrycznego D wypływający z objętości V przez zamkniętą powierzchnię S równy jest zgromadzonemu w tej objętości ładunkowi (zal 2-3).
- W postaci różniczkowej prawo to mówi że divergencja (rozbieżność) wektora indukcji elektrycznej jest równa gęstości ładunku elektrycznego (zal.2-6).
- IV prawo Maxwella - jest zapisem prawa Gaussa dla pola magnetycznego i mówi, że pole magnetyczne jest bezźródłowe.
- W postaci całkowej prawo to mówi że strumień wektora indukcji pola magnetycznego B wypływający z objętości V przez zamkniętą powierzchnię S jest równy 0 co znaczy że pole magnetyczne jest bezźródłowe (zal. 2-4).
- W postaci różniczkowej prawo to mówi, że divergencja (rozbieżność) wektora indukcji magnetycznej jest równa 0, co również znaczy że pola magnetyczne jest bezźródłowe (zal1-6).
- Równanie ciągłości prądu - opisuje relacje między prądem i ładunkiem elektrycznym.
- W postaci całkowej prawo to mówi nam, że prąd przewodzenia wypływający przez powierzchnię S zamkniętej objętości V równy jest szybkości zmian ładunku w tej objętości (zal.2-5).
- W postaci różniczkowej prawo to mówi nam, że źródłem pola gęstości prądów jest zmiana gęstości ładunku w czasie (zal 2-6).
- Parametry materiałowe ośrodka dla pola elektromagnetycznego:
- Przenikalność dielektryczna - określa relację między natężeniem pola elektrycznego a jego indukcją (zal. 2-11)
- Przenikalność magnetyczna - określa relację między natężeniem pola magnetycznego a jego indukcją (zal. 2-11)
• Konduktywność - określa relację między natężeniem pola elektrycznego a gęstością prądu przewodzenia ( zal 2-11). Rodzaje ośrodków pod katem właściwości dla pola elektromagnetycznego: • Ośrodki liniowe i nieliniowe. • Ośrodki jednorodne i niejednorodne. • Ośrodki dyspersyjne i niedyspersyjne. Parametry materiałowe ośrodka dyspersyjnego zależą a ośrodka niedyspersyjnego nie zależą od częstotliwości. • Ośrodki izotropowe i anizotropowe. Parametry materiałowe ośrodka izotropowego nie zależą zaś ośrodka anizotropowego zależą od kierunku pola Warunki brzegowe na granicy dwóch dielektryków: • Nie ma prądów i ładunków powierzchniowych. • Składowe normalne wektorów indukcji D i B oraz składowe styczne wektorów natężenia pól E i H są ciągłe. Warunki brzegowe na granicy dielektryk idealny przewodnik: W idealnym przewodniku pole elektryczne jest równe 0 i z tego wynikają następujące jego właściwości: • Pole elektryczne musi być prostopadłe do przewodnika. • Ta prostopadła (normalna) składowa pola indukuje na powierzchni przewodnika ładunek o gęstości równej indukcji elektrycznej D. • Pole magnetyczne musi być styczne do przewodnika. • Pole magnetyczne wywołuję na powierzchni przewodnika prąd o gęstości powierzchniowej j równej H. Równania Helmholtza - równania falowe dla pól harmonicznych w zapisie zespolonym. Stała propagacji – funkcja parametrów materiałowych ośrodka (zal 2-38). Wartość decyduje o szybkości zmian parametrów fali wzdłuż kierunku propagacji. Stała tłumienia część rzeczywista stałej propagacji, decyduje o szybkości strat mocy fali wzdłuż kierunku jej propagacji (zal. 2-51a) Stała fazowa część urojona stałej propagacji, decyduje o szybkości zmian fazy fali ( zal. 2-51b, 2-52b). Prędkość fazowa fali - prędkość z jaką przesuwa się płaszczyzna stałej fazy fali. Prędkość grupowa fali - jest prędkością przepływu energii. Fala płaska - Wartości chwilowe wektorów pól elektrycznego i magnetycznego tej fali są takie same w każdym punkcie płaszczyzny prostopadłej do kierunku rozchodzenia się fali. Powierzchnia ekwifazowa fali płaskiej jest płaszczyzna prostopadłą do kierunku propagacji. Właściwości fali płaskiej - fala płaska jest falą typu TEM (Transverse Electro-Magnetic) • Wektory E i H fali TEM leżą w płaszczyźnie prostopadłej do kierunku propagacji i są prostopadłe względem siebie. • Zwrot iloczynu wektorowego pola E razy pole H wyznacza kierunek propagacji a jego moduł gęstość mocy fali. • Impedancja falowa (stosunek wartości wzajemnie prostopadłych składowych pola E i H) fali płaskiej jest równy impedancji właściwej ośrodka.