Algorytmy i struktury danych/Wyszukiwanie
Wyszukiwanie
W niniejszym wykładzie opiszemy podstawowe techniki dotyczące wyszukiwania.
Zajmiemy się również prostymi strukturami słownikowymi, które oprócz
wyszukiwania, umożliwiają dodawanie i usuwanie elementów.
Wyszukiwanie liniowe
Jeśli nie dysponujemy żadną dodatkową wiedzą na temat zbioru, który chcemy przeszukiwać, to niestety musimy sprawdzić wszystkie jego elementy.
function Szukaj(x, A[1..n]) begin for i:=1 to n do if A[i]=x return i; return brak poszukiwanego elementu; end
Oczywiście w pesymistycznym przypadku (np. gdy zbiór nie zawiera poszukiwanego elementu) koszt czasowy, to .
Wyszukiwanie binarne
W niektórych przypadkach czas poszukiwania, możemy znacząco zmniejszyć. Dzieje się tak na przykład, gdy przeszukiwany zbiór przechowujemy w rosnąco uporządkowanej tablicy. W takim przypadku, wystarczy jedynie operacji, by odnaleźć poszukiwany element, lub stwierdzić jego brak.
Algorytm utrzymuje zakres , w którym może znajdować się element, przy każdym porównaniu zakres zostaje zmniejszony o połowę.
function WyszukiwanieBinarne(x, A[1..n]) { zakładamy, że tablica A, jest uporządkowana rosnąco } begin l:=1;r:=n; while (l<=r) do begin { niezmiennik, poszukiwany element, może znajdować się w zakresie A[l..r] } m:=(l+r) div 2; if (A[m]<x) then l:=m+1 else if (A[m]>x) then r:=m-1 else return m; { ponieważ A[m]=x } end; return brak poszukiwanego elementu; end;
Drzewa poszukiwań binarnych
Drzewa poszukiwań binarnych, to zwykłe drzewa binarne, których klucze spełniają następujące własności:
Dla dowolnego węzła x:
- wszystkie klucze w lewym poddrzewie węzła x, mają wartości mniejsze niż klucz węzła x,
- wszystkie klucze w lewym poddrzewie węzła x, mają wartości większe lub równe niż klucz węzła x.

Dodatkowe wymaganie dotyczące kluczy, umożliwia nam efektywne wyszukiwanie elementów w drzewie.
function Szukaj(węzeł, klucz) if (węzeł==nil) return BRAK ELEMENTU if (węzeł.klucz=klucz) then return ELEMENT ISTNIEJE else if (klucz < węzeł.klucz) then return Szukaj(węzeł.lewePoddrzewo, klucz) else if (klucz > węzeł.klucz) then return Szukaj(węzeł.prawPoddrzewo, klucz) end;
Wstawianie do drzewa jest bardzo zbliżone do wyszukiwania, musimy przejść po drzewie (rozpoczynająć w korzeniu) aby odnaleźć wolne miejsce w którym możemy dodać nową wartość.
procedure Dodaj(węzeł, klucz) if (klucz < węzeł.klucz) then if węzeł.lewePoddrzewo=nil then utwórz nowy węzeł z wartością klucz wskaźnik do nowego węzła zapisujemy w węzeł.lewePoddrzewo else Dodaj(węzeł.lewePoddrzewo, klucz) else if (klucz >= węzeł.klucz) then if węzeł.prawePoddrzewo=nil then utwórz nowy węzeł z wartością klucz wskaźnik do nowego węzła zapisujemy w węzeł.prawePoddrzewo else Dodaj(węzeł.prawePoddrzewo, klucz) end;
Możemy również usuwać wartości z drzewa, niestety ta operacja jest bardziej skomplikowana.
procedure Usuń(węzeł, klucz) if (klucz < węzeł.klucz) then Usuń(węzeł.lewePoddrzewo, klucz) else if (klucz > węzeł.klucz) then Usuń(węzeł.prawePoddrzewo, klucz) else begin { klucz = węzeł.klucz if węzeł jest liściem, then { usuń węzeł z drzewa } UsunProstyPrzypadek(węzeł) else if węzeł.lewePoddrzewo <> nil then niech x oznacza skrajnie prawy węzeł w poddrzewie węzeł.lewePoddrzewo wezel.klucz:=x.klucz; UsunProstyPrzypadek(x); 'else analogiczne postępowanie dla węzeł.prawPoddrzewo (jednak poszukujemy węzła na skrajnie lewej ścieżce) end
Procedura UsunProstyPrzypadek oznacza usuwanie z drzewa węzła, który ma co najwyżej jednego syna.
procedure UsunProstyPrzypadek(węzeł) poddrzewo:=nil; ojciec:=węzeł.ojciec; if (węzeł.lewePoddrzewo) then poddrzewo:=węzeł.lewePoddrzewo; else poddrzewo:=węzeł.prawePoddrzewo; if (ojciec=nil) then korzen:=poddrzewo; else if ojciec.lewePoddrzewo=węzeł then { węzeł jest lewym synem } ojciec.lewePoddrzewo:=poddrzewo; else { węzeł jest prawym synem } ojciec.prawePoddrzewo:=poddrzewo;
Wszystkie podane operacje mają pesymistyczny koszt gdzie oznacza wysokość drzewa. Niestety w najgorszym przypadku drzewo może mieć wysokość nawet (np. dla ciągu operacji Dodaj ).
Adresowanie bezpośrednie
W przypadku gdy zbiór który przechowujemy pochodzi z niewielkiego uniwersum (na przykład elementy zbioru to liczby z zakresu ), możemy wszystkie operacje słownikowe (dodaj, usuń, szukaj) wykonać znacznie szybciej i prościej.
Dla uniwersum zbiór możemy reprezentować przez tablicę -elementową. Początkowo w każdej komórce tablicy wpisujemy wartość false.
- dodanie elementu do zbioru, wymaga jedynie ustawienia wartości -tej komórki na true,
- analogicznie usunięcie elementu do zbioru, wymaga ustawienia wartości -tej komórki na false,
- sprawdzenie czy element należy do zbioru wykonujemy przez sprawdzenie stanu -tej komórki.
Wszystkie powyższe operacje możemy wykonać używając stałej liczby kroków.
Haszowanie
Czy możemy wykorzystać adresowanie bezpośrednie do dowolnych zbiorów? Okazuje się, że tak. Co prawda w pesymistycznym przypadku koszt jednej operacji może wynosić nawet , jednak w praktycznych zastosowaniach ta metoda sprawuje się doskonale.
W tym rozdziale będziemy zakładać, że elementy uniwersum , to dodatnie liczby całkowite. Dodatkowo zakładamy, że dysponujemy tablicą .
Ponieważ elementami mogą być bardzo duże liczby całkowite, stąd nie możemy zastosować metody adresowania bezpośredniego. Jednak możemy wybrać funkcję haszującą:
Funkcja ta dla każdego elementu uniwersum przypisuje odpowiednie miejsce w tablicy . Jeśli , to z oczywistych względów znajdą się takie pary różnych elementów , dla których . W takim przypadku mówimy o istnieniu kolizji. Właśnie ze względu na ryzyko wystąpienia kolizji, musimy nieznacznie zmodyfikować metodę adresowania bezpośredniego - zamiast przechowywać w tablicy wartość logiczną (prawda/fałsz), musimy zapisywać wartość przechowywanego elementu.
Rozwiązywanie kolizji metodą łańcuchową
Jedną z metod rozwiązywania kolizji jest utrzymywanie w każdej komórce tablicy listy elementów do niej przypisanych. Początkowo tablica wypełniona jest wartościami nil.
procedure Inicjalizacja; begin for i:=0 to m-1 do A[i]:=nil; end;
Dodanie elementu do tablicy, wymaga odczytania jego adresu z funkcji haszującej, a następnie dodania go na początek listy
procedure Dodaj(x); begin dodaj element na początek listy end;
Sprawdzenie czy element istnieje, wymaga w pesymistycznym przypadku sprawdzenia całej listy
function Szukaj(x); begin l:=A[h(x)]; while (l!=nil) do begin if (l.wartość=x) then return element istnieje l:=l.nast; end; return brak elementu end;
Usuwanie elementu z tablicy jest bardzo podobne do wyszukiwania, i również w pesymistycznym przypadku wymaga sprawdzenia całej listy.
procedure Usuń(x); begin l:=A[h(x)];p:=nil; while (l!=nil) do begin if (l.wartość=x) then begin { usuwamy element l z listy A[h(x)] } if p=nil then A[h(x)]:=l.nast; else p.nast:=l.nast; return; end p:=l; l:=l.nast; end; end;
Wybór funkcji haszujących
Od wyboru dobrej funkcji haszującej w dużej mierze zależy efektywność maszej struktury danych. Niestety nie można podać ścisłej procedury wyboru takiej funkcji.
Dla liczb całkowitych, możemy wybrać funkcję:
- (gdzie jest liczbą pierwszą), lub
- (gdzie są liczbami pierwszymi).
Adresowanie otwarte
Adresowanie otwarte, jest metodą pozwalającą uniknąć utrzymywania list elementów w tablicy haszującej. Oczywiście wymaga, to opracowania innej metody rozwiązywania konfliktów. Używając tej metody, każda komórka tablicy zawiera wartość NIL lub element zbioru.
Niech ozncza rozmiar tablicy haszującej. Zdefiniujmy funkcję , która wyznacza listę pozycji w których może znajdować się element .
Mając daną funkcję możemy zdefiniować , jako:
- --- adresowanie liniowe,
- --- adresowanie kwadratowe,
- --- podwójne haszowanie.
Wyszukiwanie elementów możemy wykonać nieznacznie modyfikując poprzednie rozwiązanie -- zamiast przeszukiwać listę elementów, musimy przeszukać ciąg pozycji zdefiniowany przez funkcję