Analiza matematyczna 1/Ćwiczenia 1: Zbiory liczbowe

Z Studia Informatyczne
Wersja z dnia 14:12, 21 sie 2006 autorstwa Gracja (dyskusja | edycje)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Przejdź do nawigacjiPrzejdź do wyszukiwania

Zbiory liczbowe

Zadania

Ćwiczenie [Uzupelnij]

Sprawdzić, czy liczby: 37, 21, 52, 12, 13 należą do trójkowego zbioru Cantora.

Ćwiczenie [Uzupelnij]

Wykazać równości

a) Parser nie mógł rozpoznać (błąd składni): {\displaystyle \forall q\in \Bbb C : q\neq 1 \ \forall n\in \Bbb N : \ 1+q+q^2+...+q^n=\frac{q^{n+1}-1}{q-1}}

b) Parser nie mógł rozpoznać (błąd składni): {\displaystyle \forall a,\ b\in \Bbb C : a\neq b \ \forall n\in \Bbb N : \ \frac{a^{n+1}-b^{n+1}}{a-b}=\sum_{k=0}^{n} a^{n-k}b^k.}

Ćwiczenie [Uzupelnij]

a) Sprawdzić, że (nk)+(nk+1)=(n+1k+1), dla dowolnych liczb całkowitych nieujemnych n, k takich, że n>k.

b) Wykazać wzór dwumianowy Newtona

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \forall a,b\in \Bbb C \ \forall n\in \Bbb N \ :\ (a+b)^n=\sum_{k=0}^n \binom{n}{k}a^{n-k}b^k}

Ćwiczenie [Uzupelnij]

Za pomocą zasady indukcji matematycznej wykazać, że dla n=0,1,2,3,... zachodzą równości

a) 1+cosa+cos2a+...+cosna=sin(n+12)a+sina22sina2

b) 0+sina+sin2a+...+sinna=cos(n+12)a+cosa22sina2

Przypomnijmy, że równości te wyprowadziliśmy w ramach wykładu, korzystając ze wzoru de Moivre'a.

Ćwiczenie [Uzupelnij]

Uprościć wyrażenia

a) (21)5

b) (1+i3)6

c) 2+3+23

Ćwiczenie [Uzupelnij]

Rozwiązać w zbiorze liczb zespolonych równania:

a) z6+64=0

b) 1+z+z2+z3+z4+z5=0

c) 2z3=1+i

Wskazówki

Wskazówka
Wskazówka
Wskazówka
Wskazówka
Wskazówka
Wskazówka

Rozwiązania i odpowiedzi

Rozwiązanie
Rozwiązanie
Rozwiązanie
Rozwiązanie
Rozwiązanie
Rozwiązanie