Inżynieria oprogramowania
Z Studia Informatyczne
Zadania – Metody formalne, sieci Petriego
Odpowiedzi
Zadanie 1:
T0, T1, T3, T4, T1- T0, T1, T3, T2, T4, T1
T0, T1, T2, T1, T3- T0, T1, T2, T3, T4, T1
<flashwrap>file=io-07-lab01.swf|width=360|height=350</flashwrap>
T0, T1, T3, T2, T4, T1
<flashwrap>file=io-07-lab02.swf|width=360|height=350</flashwrap>
T0, T1, T2, T3, T4, T1
Zadanie 2:
T1, T3, T5, T0, T3- T1, T3, T5, T2, T0, T3
T0, T3, T5, T1, T2- T0, T2, T3, T5, T4
- T2, T0, T3, T5, T1, T4
T2, T0, T3, T4, T1
<flashwrap>file=io-07-lab03.swf|width=380|height=370</flashwrap>
T1, T3, T5, T2, T0, T3
<flashwrap>file=io-07-lab04.swf|width=380|height=370</flashwrap>
T0, T2, T3, T5, T4
<flashwrap>file=io-07-lab05.swf|width=380|height=370</flashwrap>
T2, T0, T3, T5, T1, T4
Zadanie 3:
- ( T0 T1 T2 T6 ( T4 T6 )* T3 T5 )*
Zadanie 4:
Rozwiązanie przedstawiono na rysunku 5.
Rys. 5. Sieć Petriego do zadania 4
<flashwrap>file=io-07-lab05.swf|width=460|height=320</flashwrap>