Sztuczna inteligencja/SI Ćwiczenia 12

Z Studia Informatyczne
Wersja z dnia 22:15, 11 wrz 2023 autorstwa Luki (dyskusja | edycje) (Zastępowanie tekstu – „<math> ” na „<math>”)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Przejdź do nawigacjiPrzejdź do wyszukiwania

Zadanie 1

Narysować trójwymiarowy wykres przedstawiający funkcję realizowaną przez aproksymator - sieć neuronową z rozdziału 12.

Rozwiązanie

Zadanie 2

Z czego wynika potrzeba rozdzielenia zbioru danych na dane uczące i testowe?

Rozwiązanie

Zadanie 3

Załóżmy, że mamy dwie różne sieci neuronowe, uczone niezależnie od siebie na tym samym zbiorze uczącym. Załóżmy też, że rozkład błędu obu sieci na zbiorze testowym jest rozkładem normalnym o zerowej wartości oczekiwanej i standardowych odchyleniach odpowiednio: σ1 i σ2. Jaki jest rozkład na zbiorze testowym wartości 0,5(y1+y2) gdzie y1, y2 oznaczają wyjścia obu sieci? Jak można wykorzystać ten wynik do poprawy jakości aproksymacji?

Rozwiązanie

Zadanie 4

Załóżmy, że mamy użyć sieci neuronowej do prognozowania przyszłej wartości pewnego procesu zmiennego w czasie, charakteryzującego się tym, że jego przyszłe wartości zależą od przeszłych zgodnie z równaniem:

y(t)=f(y(t1),y(t2),...,y(th))

gdzie t oznacza czas, f jest nieznaną funkcją, zaś h stałą, określającą najdalszą zależność między przeszłością a przyszłością (taki proces jest przykładem tzw. szeregu czasowego).

Zaproponować sposób użycia sieci neuronowej do wykonania prognozy. Jak stworzyć zbiór trenujący dla sieci?

Rozwiązanie

Zadanie 5

Czym skutkuje obecność w zbiorze trenującym elementów powtarzających się?

Rozwiązanie

Zadanie 6

Funkcja błędu minimalizowana w czasie uczenia sieci neuronowej ma minima lokalne i punkty siodłowe (w których gradient zeruje się), a także obszary płaskie o bardzo małych wartościach modułu gradientu. Z czego wynikają te zjawiska? Dla jakich wartości wag da się je zaobserwować?

Rozwiązanie