PF Moduł 10

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Wprowadzenie

Termodynamika statystyczna opisuje układy wielu cząsteczek, z jakich składają się ciała za pomocą wielkości średnich (średnia prędkość, średnia droga, średnia energia itd.) oraz tzw. rozkładów statystycznych. Wiąże mikroskopowe, dane statystyczne o cząsteczkach z makroskopowymi parametrami stanu. Posługuje się rachunkiem prawdopodobieństwa i pozwala wyznaczać najbardziej prawdopodobne kierunki procesów.


Pomimo, że
  • Identyczne cząsteczki są w chaotycznym ruchu
  • Wszystkie kierunki ich ruchu są jednakowo prawdopodobne
  • Temperatura jest miarą ich średniej energii kinetycznej
  • Prędkości zmieniają się w wyniku zderzeń
  • Prędkości poszczególnych cząsteczek są różne w szerokim zakresie wartości.

To

Rozkład Maxwella opisuje prędkości cząsteczek gazu doskonałego będącego w stanie równowagi termodynamicznej, na który nie działają siły zewnętrzne. Pozwala obliczyć charakterystyczne wartości wielkości średnich: średnią prędkość kwadratową, średnią prędkość i prędkość najbardziej prawdopodobną oraz liczbę cząsteczek o prędkościach zawartych w przedziale wartości od v do v+dv.

Jeżeli mamy N cząsteczek, to liczba dNv cząsteczek o prędkościach w przedziale od v do v+dv będzie określona wzorem dNv=NF(v)dv , gdzie F(v) dane jest wzorem

F(v)=(m02πkT)3/2exp(m0v22kT)4πv2


Wyprowadzenie wzoru można znaleźć w literaturze.

F(v)=(m02πkT)3/2exp(m0v22kT)4πv2

Co jest charakterystyczne w tym rozkładzie F(v) ? Jest to konieczność wystąpienia maksimum ze względu na iloczyn rosnącej parabolicznie i malejącej wykładniczo zależności od v . (Przeanalizuj dokładnie trzy człony wzoru na F(v) . Pierwszy, to czynnik normalizacyjny zawierający wyłącznie wartości stałe, drugi - to człon wykładniczy, ale z ujemną wartością w wykładniku, czyli malejący ze wzrostem prędkości i równy jedynce dla , ostatni - rosnący paraboliczne ze wzrostem prędkości. Rezultat jest zobrazowany na wykresie maxwellowskiej funkcji rozkładu prędkości cząsteczek azotu przy temperaturach: 73K(200C) , 273K(0C) , 473K(200C). Gdy temperatura rośnie maksimum krzywej rozkładu przesuwa się w stronę większych prędkości i krzywa ulega spłaszczeniu. Pole pod krzywą równe jest całkowitej liczbie cząsteczek w próbce i pozostaje stałe niezależnie od temperatury.

Rozkład prędkości cząsteczek w danej temperaturze zależy od masy cząsteczek. Im mniejsza masa tym większa liczba cząsteczek o dużych prędkościach.