TKI Moduł 12
Dziedziny jako częściowe porządki
Pojęcia podstawowe
Niech będzie częściowym porządkiem. Element jest ograniczeniem górnym zbioru , jeśli dla każdego (co zapisujemy również ). Podobnie, element jest ograniczeniem dolnym zbioru , jeśli dla każdego (czyli ). Jeśli dwa dowolne elementy posiadają w ograniczenie górne, to oznaczamy to jako . W przeciwnym wypadku piszemy . Najmniejsze ograniczenie górne zbioru (jeśli istnieje) nazywamy supremum i oznaczamy . Największe ograniczenie dolne zbioru (jeśli istnieje) nazywamy infimum i oznaczamy . Jeśli jest dwuelementowy, np. , i posiada supremum (infimum), to piszemy () i mówimy o supremum (infimum) bianarnym.
Poset jest kratą, jeśli ma wszystkie suprema i infima binarne. Poset jest kratą zupełną jeśli dowolny jego podzbiór posiada zarówno supremum, jak i infimum.
Podzbiór porządku nazywamy skierowanym, co oznaczamy , jeśli jest niepusty i każde dwa elementy z posiadają ograniczenie górne w (tzn. i dla pewnego ). Łańcuchem nazywamy każdy zbiór skierowany, który jest liniowy. Supremum zbioru skierowanego oznaczamy , kiedykolwiek istnieje. Podzbiór porządku nazywamy filtrowanym, jeśli jest niepusty i każde dwa elementy z posiadają ograniczenie dolne w (tzn. i dla pewnego ). Infimum zbioru filtrowanego (jeśli istnieje) oznaczamy .
Poset nazywamy -zupełnym, jeśli posiada element najmniejszy oraz każde dwa elementy takie, że , posiadają supremum .
Oznaczamy:
jest zbiorem dolnym, jeśli . jest zbiorem górnym, jeśli . jest ideałem, jeśli jest skierowany i dolny. jest filtrem, jeśli jest filtrowany i górny. Ideałem głównym nazywamy każdy ideał postaci dla . Filtrem głównym jest każdy filtr postaci dla pewnego .
Poset nazywamy zupełnym (mówimy też: jest dcpo), jeśli każdy zbiór skierowany posiada supremum w .
W każdym zbiorze częściowo uporządkowanym możemy zdefiniować relację aproksymacji (ang. way-below relation) w następujący sposób: dla mamy (czytamy: aproksymuje lub jest skończony względem ) wtw, gdy dla każdego zbioru skierowanego takiego, że mamy dla pewnego . W jednym zdaniu:
Element nazywamy zwartym lub skończonym, gdy . Zbiór wszystkich elementów zwartych posetu oznaczamy zwykle . Dla relacji przyjmujemy podobne oznaczenia, jak dla porządku:
Relacja aproksymacji w dowolnym posecie posiada nadstępujące własności:
(w1) ,
(w2) ,
(w3) .
Bazą posetu nazywamy każdy podzbiór taki, że dla każdego zbiór jest skierowany i posiada supremum .
Definicja. Poset jest ciągły jeśli posiada bazę. Jeśli jest bazą, to mówimy, że jest algebraiczny.
Twierdzenie. Poset jest ciągły wtw, gdy dla każdego , zbiór jest skierowany i mamy .
Dowód: Niech będzie ciągły i będzie bazą dla . Niech bedzie dowolnym elementem . Pokażemy, że jest zbiorem skierowanym i jego supremum to . Niech . Skoro z założenia zbiór jest skierowany z supremum , to z definicji relacji aproksymacji istnieją dwa elementy takie, że oraz . Ale ze skierowania zbioru wynika istnienie elementu takiego, że oraz . A zatem z własności (w2) mamy , czyli wykazaliśmy, że zbiór jest skierowany. Zauważmy, że jest ograniczeniem górnym zbioru . Jeśli jest dowolnym innym ograniczeniem górnym, to skoro , to . A zatem . Z drugiej strony, jeśli jest dowolnym posetem takim, że , to jest bazą, a więc jest ciągły. QED.
Zauważmy, że drobna modyfikacja pierwszej części powyższego dowodu pozwala nam wywnioskować, że jeśli jest bazą dla , to dowolny nadzbiór jest również bazą dla .
Twierdzenie. Jeśli poset jest ciągły, to relacja aproksymacji posiada własność interpolacji:
(w4) .
Definicja. Poset nazywamy dziedziną} lub dziedziną ciągłą jeśli jest ciągły i zupełny.
Dziedziną algebraiczną nazywamy każdy zupełny poset algebraiczny . Poset jest dziedziną -ciągłą, jeśli posiada przeliczalną bazę. Dziedzina algebraiczna z przeliczalną bazą jest nazywana dziedziną -algebraiczną lub dziedziną Scotta. (Zauważmy, że na to by dziedzina algebraiczna była -algebraiczna potrzeba i wystarcza, by baza była przeliczalna. Dowód tego stwierdzenia jest bardzo prosty i wynika z dwóch faktow: z tego, że dla każdej bazy dziedziny oraz z tego, że w dowolnym posecie każdy nadzbiór bazy jest również bazą.)
Przykłady
Rozważmy następujące sztandarowe przykłady zbiorów częściowo uporządkowanych:
Przykład [poset skończony] Każdy poset skończony jest dcpo, ponieważ każdy jego podzbiór skierowany posiada element największy. Co więcej, każdy element jest zwarty, a więc jest dziedziną Scotta.
Przykład [liczby naturalne] W posecie liczb naturalnych z porządkiem naturalnym każdy element jest zwarty, tak więc jest posetem algebraicznym. Poset nie jest jednak zupełny, ponieważ łańcuch nie ma supremum.
Przykład [odcinek] Odcinek z naturalnym porządkiem jest ciągły, co łatwo wynika z faktu, że wtw, gdy lub . Jest to również krata zupełna, a więc w szczególności dziedzina ciągła i poset -zupełny.
Przykład [zbiór potęgowy] Niech będzie dowolnym zbiorem. Zbiór potęgowy jest kratą zupełną i dla każdego mamy i . jest więc w szczególności zupełny i -zupełny. Najmniejszym elementem jest , a największym . Pokażemy, że dla mamy wtw, gdy jest skończonym podzbiorem . Rzeczywiście, załóżmy, że . Ponieważ i tenże zbiór jest skierowany, istnieje taki, że . Zbiór jest więc skończony, jako podzbiór zbioru skończonego . Załóżmy, że . Przypuśćmy, że dla pewnego zbioru skierowanego w . Mamy więc , co oznacza, że dla każdego istnieje taki, że . Ponieważ jest skierowany, istnieje , który zawiera wszystkie zbiory . To oznacza, że , co należało pokazać.
Przykład [dziedzina podprzedziałów odcinka] Niech oznacza zbiór wszystkich podprzedziałów domkniętych, niepustych przedziału uporządkowany względem odwrotnej inkluzji, to znaczy: dla . Poset jest zupełny, -zupełny, -ciągły i nie jest algebraiczny. Elementem najmniejszym jest , a element największy nie istnieje. Elementami maksymalnymi są wszystkie przedziały postaci dla , które utożsamiamy w sposób naturalny z liczbami rzeczywistymi z odcinka . Relacja aproksymacji jest dana jako: . Bazą przeliczalną w jest rodzina wszystkich podprzedziałów odcinka o końcach wymiernych.