PF Moduł 5

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

Wstęp

W życiu codziennym często spotykamy się z ruchami periodycznymi, gdy ciało porusza się tam i z powrotem, wracając co pewien czas do tego samego punktu. Może to być ruch huśtawki, drgania strun w instrumentach muzycznych, ruch ciężarka wiszącego na sprężynie, czy drgania szyb okiennych przy hałaśliwej ulicy. Ruch taki nazywamy ruchem okresowym, drgającym lub oscylacyjnym. Drgania dotyczą często periodycznych zmian innych wielkości niż położenie ciała, na przykład napięcia elektrycznego lub ciśnienia. Ruchy drgające można opisać, w sposób dokładny lub przybliżony, za pomocą wyrażeń zawierających funkcje sinus i cosinus. Funkcje te nazywamy funkcjami harmonicznymi, zaś opis taki nosi nazwę analizy harmonicznej. W przypadkach niektórych ruchów drgających, zwanych ruchami harmonicznymi, opis ten jest szczególnie prosty. Siły wywołujące te ruchy nazywamy siłami harmonicznymi. Ruchy sinusoidalne, czyli takie, które można opisać funkcjami sinus i cosinus, są najbardziej powszechną formą ruchu, dlatego są ważnym przedmiotem badań fizyki. Pamiętajmy, że ruchy harmoniczne są ruchami drgającymi, jednak nie wszystkie ruchy należące do klasy ruchów okresowych, drgających lub oscylacyjnych są ruchami harmonicznymi. Jeśli drga cząstka ośrodka sprężystego, drgania te przenoszą się na kolejne cząstki i w ośrodku rozchodzi się fala. W tym wykładzie omówione będą tylko fale w ośrodkach sprężystych, lecz pamiętajmy, że takimi samymi równaniami można opisać wiele zjawisk falowych: od fal rozchodzących się w strunie, poprzez fale dźwiękowe, aż do całej klasy fal elektromagnetycznych. Jak dowiemy się w dalszej części kursu, każda poruszająca się cząstka jest w istocie falą, tak więc równanie falowe spełnia fundamentalną rolę w opisie świata.



Ruch punktu materialnego nazywamy harmonicznym, jeśli porusza się on pod wpływem siły F o wartości wprost proporcjonalnej do wychylenia z położenia równowagi x i skierowanej przeciwnie do wychylenia. O zwrocie siły mówi znak minus we wzorze F=kx, gdzie k jest