Teoria informacji/TI Wykład 13

Złożonośc informacyjna Kołmogorowa
Odwołajmy się do codziennego doświadczenia. Chyba każdy się zgodzi, że niektóre liczby można zapamiętać łatwiej niż inne i nie zależy to tylko od wielkości liczby. Bez trudu zapamiętamy liczbę czy nawet
natomiast zapamietanie 20 ,,losowych" cyfr sprawi nam kłopot. No, chyba, że to będą np.
31415926535897932384
wtedy, nawet jeśli nie ,,trzymamy" tych cyfr w pamięci, możemy je w razie potrzeby odtworzyć, np. korzystając z formuły Leibniza .
Nie inaczej ma się sprawa z tekstami. Mamy swiadomość, że przy odpowiednim nakładzie pracy i czasu potrafilibysmy się nauczyć na pamięć wybranej księgi ,,Pana Tadeusz" (a może nawet calego poematu), natomiast zapamietanie -- powiedzmy -- 10 stron ,,losowych" symboli wydaje się przekraczać możliwości zwykłego człowieka. No chyba, że znowu -- znaleźlibysmy jakiś ,,klucz", na przykład okazałoby się, ze jest to tekst w obcym języku, którego jednak jestesmy w stanie się nauczyć.
Jakie pojęcia matematyczne kryją się za tym zjawiskiem? W przypadku liczb odpowiedź jest stosunkowo prosta: niektóre liczby mozna opisać znacznie krócej niż podając ich rozwinięcia dziesiętne. Oczywiście, przy uściśleniu tej obserwacji trzeba pamiętać o paradoksie Berry'ego wspomnianym na pierwszym wykładzie -- w ten sposób powracamy do pojęcia notacji.