GKIW Moduł 6 - Modelowanie obiektów: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu – „ </math>” na „</math>” |
m Zastępowanie tekstu – „,...,” na „,\ldots,” |
||
Linia 182: | Linia 182: | ||
|width="500px" valign="top"|[[Grafika:GKIW_M6_Slajd_12.png|thumb|500px]] | |width="500px" valign="top"|[[Grafika:GKIW_M6_Slajd_12.png|thumb|500px]] | ||
|valign="top"|Pierwsza właściwość – zerowanie funkcji sklejanej poza przedziałem <math><t_i,t_{i+m+1}></math> jest bardzo istotna dla modelowania kształtu. Oznacza bowiem lokalność wpływu parametrów. Rozpatrzmy podprzedział <math><t_i,t_{i+m+1}></math> dla <math>t\in (t_i,t_{i+m+1})</math> niezerowe są tylko funkcje <math>N_i^m(t)</math> o indeksach <math>i=j-m, j-m+1, j-m+2, j</math> . W takim przedziale wartość <math>Q(t)</math> , a tym samym kształt krzywej, zależy tylko od punktów kontrolnych <math>P_{j-m}, P_{j-m+1}, P_{j-m+2},…P_j</math> . Z drugiej strony punkt kontrolny <math>P_i</math> wpływa jedynie na fragment krzywej odpowiadający <math>t\in <t_i, t_{i+m+1}></math> . | |valign="top"|Pierwsza właściwość – zerowanie funkcji sklejanej poza przedziałem <math><t_i,t_{i+m+1}></math> jest bardzo istotna dla modelowania kształtu. Oznacza bowiem lokalność wpływu parametrów. Rozpatrzmy podprzedział <math><t_i,t_{i+m+1}></math> dla <math>t\in (t_i,t_{i+m+1})</math> niezerowe są tylko funkcje <math>N_i^m(t)</math> o indeksach <math>i=j-m, j-m+1, j-m+2, j</math> . W takim przedziale wartość <math>Q(t)</math> , a tym samym kształt krzywej, zależy tylko od punktów kontrolnych <math>P_{j-m}, P_{j-m+1}, P_{j-m+2},…P_j</math> . Z drugiej strony punkt kontrolny <math>P_i</math> wpływa jedynie na fragment krzywej odpowiadający <math>t\in <t_i, t_{i+m+1}></math> . | ||
Indeks <math>j</math> zmienia się od 0 do <math>m</math> , natomiast <math>i</math> od 0 do <math>n</math> . Cały zakres takiej krzywej definiują więc węzły: <math>t_0 \le t_1 \le t_2 \le ... \le t_n_+_m_+_1</math> . Ale danych jest <math>n+1</math> punktów kontrolnych (de Boora). Punkty <math>P_0, P_1, P_2,…P_m</math> definiują krzywą dla <math>t\in <t_m,t_{m+1}></math> , natomiast punkty <math>P_{n-m}, P_{n-m+1}, P_{n-m+2},…P_n</math> definiują krzywą dla <math>t\in <t_n,t_{n+1}></math> . Węzły <math>t_0,t_1,t_2, | Indeks <math>j</math> zmienia się od 0 do <math>m</math> , natomiast <math>i</math> od 0 do <math>n</math> . Cały zakres takiej krzywej definiują więc węzły: <math>t_0 \le t_1 \le t_2 \le ... \le t_n_+_m_+_1</math> . Ale danych jest <math>n+1</math> punktów kontrolnych (de Boora). Punkty <math>P_0, P_1, P_2,…P_m</math> definiują krzywą dla <math>t\in <t_m,t_{m+1}></math> , natomiast punkty <math>P_{n-m}, P_{n-m+1}, P_{n-m+2},…P_n</math> definiują krzywą dla <math>t\in <t_n,t_{n+1}></math> . Węzły <math>t_0,t_1,t_2,\ldots,t_n</math> oraz <math>t_{n+1},t_{n+2},\ldots,t_{n+m+1}</math> nazywane są węzłami brzegowymi. Jeśli krzywa jest otwarta, to znaczy <math>Q(t_m)\ne Q(t_{n+1})</math> , i <math>t_0=t_1=t_2=...=t_m</math> oraz <math>t_{n+1}=t_{n+2}=...=t_{n+m+1}</math> to krzywa przechodzi przez końcowe punkty kontrolne, czyli <math>Q(t_m)=P_0</math> oraz <math>Q(t_{n+1})=P_n</math> . Podobnie jak było w przypadku krzywych Béziera, styczne do krzywej w punktach końcowych mają kierunek końcowych odcinków łamanej kontrolnej. Dla krzywej zamkniętej przyjmuje się, że punkty de Boora i węzły kontrolne są cykliczne <math>(P_n=P_0)</math>. | ||
|} | |} |
Aktualna wersja na dzień 21:58, 15 wrz 2023
Wykład
![]() |
Literatura
![]() |