ASD Ćwiczenia 14: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu - "\ =\" na "="
m Zastępowanie tekstu – „<math> ” na „<math>”
 
Linia 39: Linia 39:


<div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible-content" style="display:none">
Oznaczmy <math> Sub(n)=|Subwords(F_n)|</math> i niech <math> \Phi_n</math> będzie n-tą liczba Fibonacciego.
Oznaczmy <math>Sub(n)=|Subwords(F_n)|</math> i niech <math>\Phi_n</math> będzie n-tą liczba Fibonacciego.
Wtedy
Wtedy


Linia 115: Linia 115:


Opiszemy operacje redukcji tekstu. Jeśli w zbiorze X są teksty ua, vb, gdzie a,b są różnymi cyframi binarnymi  
Opiszemy operacje redukcji tekstu. Jeśli w zbiorze X są teksty ua, vb, gdzie a,b są różnymi cyframi binarnymi  
oraz u jest sufiksem v (np. gdy <math> u=v</math>) , to zastępujemy w X słowo vb przez słowo v. Inaczej mówiąc wykonujemy operację:
oraz u jest sufiksem v (np. gdy <math>u=v</math>) , to zastępujemy w X słowo vb przez słowo v. Inaczej mówiąc wykonujemy operację:
<br>
<br>



Aktualna wersja na dzień 10:36, 5 wrz 2023

Zadanie 1

Dane są teksty x, y. Oblicz najdłuższy tekst z (oznaczany LCS(x,y) od ang. Longest Common Subword), który jest jednocześnie podsłowem x i y.

Rozwiązanie

Zadanie 2

Niech lcp będzie tablicą najdłuższych wspólnych prefiksów dla słowa x oraz niech SUMA(lcp) będzie sumą elementów tablicy lcp. Uzasadnij, dlaczego liczba wszystkich niepustych podsłów x wynosi


(n+12)SUMA(lcp)

Rozwiązanie


Zadanie 3

Wyprowadź wzór na |Subwords(Fn)|

Rozwiązanie

Zadanie 4

Niech lcp[k]=lcp[rank[k]1]. Udowodnij, że lcp[k]lcp[k1]1

Rozwiązanie

Zadanie 5

Opisz liniowy algorytm obliczania tablicę ROT, przy założeniu, że mamy liniowy algorytm obliczania tablicy sufiksowej.

Rozwiązanie

Zadanie 6

Pokaż, że jeśli mamy tablicę sufiksową dla słowa compress(x), to można łatwo obliczyć SUF[M] w czasie liniowym.

Rozwiązanie


Zadanie 7

(Teksty-> Grafy) Dany jet zbiór tekstów długości dwa. Wyznaczyć długość minimalnego tekstu, zawierającego teksty wejściowe.

Rozwiązanie


Zadanie 8

Dany jest zbiór X tekstów binarnych. Sprawdzić czy istnieje nieskończenie wiele słów binarnych nie zawierających żadnego elementu z X jako podsłowo.

Rozwiązanie


Zadanie 9

Udowdnij, że dla słów Fibonacciego kończących się na literę 'a' tablica sufksowa jest postępem arytmetycznym modulo długość słowa.

Rozwiązanie