Języki, automaty i obliczenia/Ćwiczenia 10: Lemat o pompowaniu dla języków bezkontekstowych. Własności języków bezkontekstowych. Problemy rozstrzygalne: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu – „ </math>” na „</math>”
m Zastępowanie tekstu – „<math> ” na „<math>”
Linia 14: Linia 14:


Punkt 1.<br>
Punkt 1.<br>
Rozważmy słowo <math> a^{n}b^{n}c^n \in L</math>, dla  <math>3n \geqslant N</math>, gdzie <math>N</math> jest stałą z lematu o pompowaniu.  
Rozważmy słowo <math>a^{n}b^{n}c^n \in L</math>, dla  <math>3n \geqslant N</math>, gdzie <math>N</math> jest stałą z lematu o pompowaniu.  
Podobnie jak w przykładzie [http://osilek.mimuw.edu.pl/index.php?title=J%C4%99zyki%2C_automaty_i_obliczenia/Wyk%C5%82ad_10:_Lemat_o_pompowaniu_dla_j%C4%99zyk%C3%B3w_bezkontekstowych._W%C5%82asno%C5%9Bci_j%C4%99zyk%C3%B3w_bezkontekstowych._Problemy_rozstrzygalne#prz.1 1.1]  pokazujemy, że jedyną możliwością rozłożenia   
Podobnie jak w przykładzie [http://osilek.mimuw.edu.pl/index.php?title=J%C4%99zyki%2C_automaty_i_obliczenia/Wyk%C5%82ad_10:_Lemat_o_pompowaniu_dla_j%C4%99zyk%C3%B3w_bezkontekstowych._W%C5%82asno%C5%9Bci_j%C4%99zyk%C3%B3w_bezkontekstowych._Problemy_rozstrzygalne#prz.1 1.1]  pokazujemy, że jedyną możliwością rozłożenia   
słowa <math>a^{n}b^{n}c^n = u_1w_1uw_2u_2</math> zgodnym z lematem o pompowaniu jest przyjęcie jako  <math>w_1</math> i <math>w_2</math> potęgi
słowa <math>a^{n}b^{n}c^n = u_1w_1uw_2u_2</math> zgodnym z lematem o pompowaniu jest przyjęcie jako  <math>w_1</math> i <math>w_2</math> potęgi
Linia 25: Linia 25:


Punkt 3.<br>
Punkt 3.<br>
Dostatecznie długie słowo <math> w\overleftarrow{w}a^{|w|}\in L</math> możemy rozłożyć na katenację pięciu słów  
Dostatecznie długie słowo <math>w\overleftarrow{w}a^{|w|}\in L</math> możemy rozłożyć na katenację pięciu słów  
tak, by był spełniony  warunek pompowania z lematu. Jeśli <math>w=a_1...a_n</math>, to  
tak, by był spełniony  warunek pompowania z lematu. Jeśli <math>w=a_1...a_n</math>, to  
<center><math>w\overleftarrow{w}a^{|w|}=\underbrace {a_1...a_k}_{u_1} \underbrace{a_{k+1}...a_n a_n....a_{k+1}}_{w_1 }
<center><math>w\overleftarrow{w}a^{|w|}=\underbrace {a_1...a_k}_{u_1} \underbrace{a_{k+1}...a_n a_n....a_{k+1}}_{w_1 }
Linia 86: Linia 86:
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie</span><div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie</span><div class="mw-collapsible-content" style="display:none">
Wystarczy  udowodnić, że każdy język bezkontekstowy jest regularny. Niech  
Wystarczy  udowodnić, że każdy język bezkontekstowy jest regularny. Niech  
<math> L \subset \{a\}^*</math> będzie językiem bezkontekstowym. Z lematu o pompowaniu wynika, że  
<math>L \subset \{a\}^*</math> będzie językiem bezkontekstowym. Z lematu o pompowaniu wynika, że  
<math>\exists N,M \geqslant 1</math> takie, że każde słowo <math>w \in L</math> o długości <math>|w| > N</math> można
<math>\exists N,M \geqslant 1</math> takie, że każde słowo <math>w \in L</math> o długości <math>|w| > N</math> można
przedstawić w formie <math>w=u_1w_1uw_2u_2</math>, gdzie  <math>w_{1,}w_{2},v_{1},v_{2},u\in A^{*} </math>  oraz
przedstawić w formie <math>w=u_1w_1uw_2u_2</math>, gdzie  <math>w_{1,}w_{2},v_{1},v_{2},u\in A^{*} </math>  oraz
<math>|w_1uw_2 |\leqslant M</math>, <math>w_1w_2 \neq 1</math>,  <math>u_1w_1^iuw_2^iu_2 \in L</math> dla <math>i=0,1,..</math>.<br>
<math>|w_1uw_2 |\leqslant M</math>, <math>w_1w_2 \neq 1</math>,  <math>u_1w_1^iuw_2^iu_2 \in L</math> dla <math>i=0,1,..</math>.<br>
Stąd, że <math> L \subset \{a\}^*</math> wynika, że <math>w=a^pa^k</math> dla pewnego <math>k\leqslant M</math> oraz <math>a^p(a^k)^i \in L</math> dla <math>i=0,1,..</math>..<br>
Stąd, że <math>L \subset \{a\}^*</math> wynika, że <math>w=a^pa^k</math> dla pewnego <math>k\leqslant M</math> oraz <math>a^p(a^k)^i \in L</math> dla <math>i=0,1,..</math>..<br>
Przyjmijmy <math>n=M!</math>. Wówczas dla każdego słowa <math>w \in L</math> o długości <math>|w| > N</math> mamy
Przyjmijmy <math>n=M!</math>. Wówczas dla każdego słowa <math>w \in L</math> o długości <math>|w| > N</math> mamy
<math>w(a^n)^*=w(a^k)^{\frac{n}{k}}\subset L \subset \{a\}^*</math>. <br>
<math>w(a^n)^*=w(a^k)^{\frac{n}{k}}\subset L \subset \{a\}^*</math>. <br>
Linia 117: Linia 117:


{{cwiczenie|5||
{{cwiczenie|5||
Czy gramatyka poprawnych nawiasów  <center><math>(\{v_0\},\{(,)\},v_0, P ),</math> gdzie <math> P: v_0 \rightarrow v_0 v_0\;|\;(v_0)\;|\;1</math></center>
Czy gramatyka poprawnych nawiasów  <center><math>(\{v_0\},\{(,)\},v_0, P ),</math> gdzie <math>P: v_0 \rightarrow v_0 v_0\;|\;(v_0)\;|\;1</math></center>


jest jednoznaczna?
jest jednoznaczna?
Linia 231: Linia 231:
{{cwiczenie|11||}}
{{cwiczenie|11||}}
Czy gramatyka poprawnych nawiasów   
Czy gramatyka poprawnych nawiasów   
<center><math>(\{v_0,v_1\},\{(,)\},v_0, P ),</math> gdzie <math>  
<center><math>(\{v_0,v_1\},\{(,)\},v_0, P ),</math> gdzie <math>
P: v_0 \rightarrow v_1 v_0\;|\;1, \;\; v_1 \rightarrow (v_0)</math></center>
P: v_0 \rightarrow v_1 v_0\;|\;1, \;\; v_1 \rightarrow (v_0)</math></center>



Wersja z 10:35, 5 wrz 2023

Ćwiczenia 10

Ćwiczenie 1

Wykorzystując lemat o pompowaniu, udowodnij, że następujące języki nie są bezkontekstowe:

  1. L={anbmck:k=max{n,m}},
  2. L={akbncm:k<n<m},
  3. L={wwa|w|:w{a,b}*}.
Rozwiązanie

Lemat 1 (Ogden)

Dla dowolnego języka bezkontekstowego LA* istnieje liczba naturalna M1 taka, że każde słowo wL, w którym wyróżniono M lub więcej pozycji, można przedstawić w formie w=u1w1uw2u2, gdzie w1,w2,v1,v2,uA* oraz

  1. w1w2 zawiera przynajmniej jedną wyróżnioną pozycję,
  2. w1uw2 zawiera co najwyżej M wyróżnionych pozycji,
  3. u1w1iuw2iu2L dla i=0,1,...

Lemat o pompowaniu jest szczególnym przypadkiem lematu Ogdena. Lemat Ogdena można próbować stosować w tych przypadkach, w których lemat o pompowaniu nie działa.

Ćwiczenie 2

Stosując lemat Ogdena pokaż, że język L={aibjck:i=j,j=k,k=i} nie jest bezkontekstowy.

Rozwiązanie

Ćwiczenie 3

Udowodnij, że dla dowolnego języka L nad alfabetem jednoelementowym

L3L2.
Rozwiązanie

Ćwiczenie 4

Udowodnij, że język L={anbn:n nie jest wielokrotnością liczby 5} jest bezkontekstowy.

Rozwiązanie

Ćwiczenie 5

Czy gramatyka poprawnych nawiasów
({v0},{(,)},v0,P), gdzie P:v0v0v0|(v0)|1

jest jednoznaczna?

Rozwiązanie

Ćwiczenie 6

Określ gramatyki generujące języki:

  1. L1={anbmcm:m,n0}{anbncm:m,n0},
  2. L2={anbnapbq:n,p,q1}{anbmapbp:n,m,p1}.

Czy gramatyki te są jednoznaczne?

Rozwiązanie

Ćwiczenie 7

Dana niech będzie gramatyka (v0 jest symbolem początkowym):

v0v0v1 | v3v1v1v1v2 | v2v3v2v4v1 | v3v3 | av3v1v2 | v4v2 | bv4v3v4 | v0v1 | c

Używając algorytmu Cocke'a-Youngera-Kasamiego, sprawdź, czy poniższe słowa należą do języka generowanego przez tę gramatykę:

  1. w1=bac,
  2. w2=babcab,
  3. w3=bcaaca.
Rozwiązanie
ZADANIA DOMOWE

Ćwiczenie 8

Wykorzystując lemat o pompowaniu, udowodnij, że następujące języki nie są bezkontekstowe:

  1. L={anbmck:k=min{m,n}},
  2. L={anbmck:k=mn},
  3. L={anbn2}.

Ćwiczenie 9

Stosując lemat Ogdena, pokaż, że język L={aibjck:i,j,k>1, k=ir, k=js, gdzie r,s{2,3,...}} nie jest bezkontekstowy.

Wskazówka

Ćwiczenie 10

Udowodnij, że język L={ww:w{a,b}*{ab2a}} jest bezkontekstowy.

Ćwiczenie 11

Czy gramatyka poprawnych nawiasów

({v0,v1},{(,)},v0,P), gdzie P:v0v1v0|1,v1(v0)

rozważana w przykładzie 1.2 jest jednoznaczna?

Ćwiczenie 12

Określ gramatyki generujące języki:

  1. L3={anbmcndp:m,n,p0}{anbmcpdm:m,n,p0},
  2. L4={anb2n:n1}{anb3n:n1}.

Czy gramatyki te są jednoznaczne? Wykaż, że język L4 jest jednoznaczny.

Ćwiczenie 13

Napisz algorytmy rozstrzygające, czy dany język bezkontekstowy jest:

  1. nieskończny,
  2. niepusty.

Ćwiczenie 14

Dana niech będzie gramatyka (v0 jest symbolem początkowym):

v0v0v1 | v3v1v1v2v1 | v3v2v2v1v4 | v3v3 | av3v2v2 | v4v2 | bv4v1v4 | v0v1 | c.

Używając algorytmu Cocke'a-Youngera-Kasamiego, sprawdź, czy poniższe słowa należą do języka generowanego przez tę gramatykę:

  1. w1=cabba,
  2. w2=baccab,
  3. w3=aabbcc.